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Abstract

Energy demand flexibility from buildings remains a largely untapped resource in electric power systems,

in spite of its potential to be a low-cost substitute for investments in rarely used generation capacity. We

develop a general methodology to estimate the aggregate cooling demand response for a large number of

co-located buildings to thermostat temperature set point increases using empirically estimated building-level

demand reductions in a subset of these buildings. For this subset of buildings, estimates were previously

computed from real-world experimental data. The response of each remaining building is estimated as a

different weighted sum of the empirical estimates, where the weights depend on observable characteristics

of the buildings. We apply our method to a district energy system at a university campus that is roughly

equivalent to a city of 30,000 people. Cooling is produced at a central energy facility with electric heat

pumps and distributed to 124 commercial buildings through a chilled water loop. The response of six

of these buildings to 1.1°C (2°F) daily temperature set point adjustments was previously estimated. Our

methodology provides estimates for all 124 buildings and an estimate of the campus-wide demand response

potential by leveraging a dataset including both structural (e.g. age, square footage) and operational (cooling

loads and types of building operation) features for the full set of buildings. We estimate a 13.47% reduction

in the campus energy system capacity needs under a 1.1°C daily set point increase in all campus buildings

during the 10 highest system demand days in 2020. On the highest demand day of 2020, we find that our

predicted demand reduction could provide services equivalent to those provided by a lithium-ion battery

with $4.6 - $8.0 million installation cost at current prices and a storage capacity of 35.6 - 52.6 MWh.
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1. Introduction

1.1. Motivation and context

Residential and commercial buildings accounted for 29% of total final energy consumption in the United

States in 2020 [1]. Increased deployment of renewable generation technologies coupled with retirements

of conventional, dispatchable generation resources has led to challenges managing the real-time balance

of supply and demand [2]. Active management of energy consumption in buildings–and in commercial

buildings in particular–holds potential to provide significant flexibility in electric grids with a high share of

intermittent renewable generation [3].

Commercial buildings in California accounted for 34.0% of the state’s electricity demand in 2020 [4].

According to the 2006 California Commercial End Use Survey, heating ventilation and air conditioning

(HVAC) accounts for 29% of commercial building electricity use, which implies 9.9% of total in-state elec-

tricity consumption in 2020. Moreover, because this is an annual average, the share of consumption devoted

to air conditioning is considerably higher during peak demand hours of hot summer days.

Thermal demand response through control of HVAC system thermostat temperature set points has the

potential to provide sizeable energy demand reductions with relatively small impacts on the heating and

cooling services delivered to building occupants [5, 6]. Dynamic thermostat set point control can also reduce

the need for future HVAC capacity investments.

District heating and cooling systems are of particular interest for harnessing demand-side energy flex-

ibility because of their large energy demands. They consist of groups of buildings with their heating and

cooling needs served through a central energy facility (CEF). Types of locations that may have heating and

cooling provided by this type of system include university campuses, medical centers, corporate campuses,

and buildings in urban areas [7].

The capital investment required to upgrade heating and cooling capacity for district energy systems is

substantial. Moreover, where systems are designed to meet peak loads that are a large multiple of average

loads, this implies that a high proportion of capacity is used infrequently. Dynamic thermostat set point

changes can increase the capacity utilization rate of a district energy system while at the same time can also

provide real-time energy and operating reserves to the electric system operator.

Deriving estimates of district energy system demand reductions from temperature set point increases

with an acceptable degree of accuracy is challenging. Physics-based building-level models require a large

amount of input data and the demand response estimates obtained can be highly sensitive to modeling

assumptions. A statistical model of the relationship between building-level energy use and the temperature

set point recovers an estimate based on actual use of the building, but implementing these set point changes

and measuring their impacts on building-level energy use is expensive. Consequently, leveraging estimation

results from a small subset of buildings where set point increases are implemented can be a low-cost way to
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estimate the demand reduction from set point changes in all buildings in a district energy system.

We propose a methodology to extend set point increase estimation results from a small number of

buildings under a variety of summer month weather conditions to the level of the district energy system

using observed structural and operational characteristics of all buildings in the system. We focus on a

district energy system that serves a university campus in Northern California. In this system, the CEF

produces heated and chilled water to serve the HVAC demands of 124 buildings through hot and cold water

loops. The system includes cold water chillers, hot water generators, heat recovery chillers, and hot and

cold water storage. See de Chalendar, et al. [8] for a detailed description of this district energy system

and the optimization problem of the system operator. Methods described here also will be applicable to

other similar settings where district energy systems are deployed to serve groups of buildings [9], and to

estimate the demand flexibility in larger building stocks more generally. In this study we focus only on

managing cooling demand of the system, and do not address heating capacity requirements. This is because

the cooling capacity is the binding constraint in this system and experimental data was only available for

cooling demand response to set point changes.

Figure 1 displays the daily cooling load duration curve for this campus energy system for 2020 (with

2018 and 2019 as dashed lines for reference). This load duration curve displays the daily cooling demand

of the system arranged from the highest to lowest day of the year. The horizontal axis of the plot labeled

“Day of the year” indicates the ranking of each daily cooling load in the associated year (e.g. day 1 is the

highest demand day of the year, day 2 is the second highest, and so on). This curve provides an indication

of how much potential there is for demand flexibility to save on CEF capacity. In this study we define

“demand flexibility” as the change in demand that can be realized as the result of a particular load control

action. If the CEF is designed with the capacity necessary to serve cooling demand on all days of the year

with no forced curtailment, this amounts to a “design for the worst day” approach. For a system with

the load duration curve pictured in Figure 1, this would lead to a sizeable amount of capacity being used

very infrequently. The cross-hatched area in the figure denotes the amount of unused installed capacity if a

system were designed to meet the maximum demand of this year.

Figure 1 also shows a steep downward sloping curve in the top left region of the plot, indicating an

opportunity for cooling demand reduction on a small number of days to save on installed capacity. For

example, for a district energy system designed to meet the daily cooling demands for 2020, 10% of the

capacity would only be needed on five days of the year, while 20% of the capacity would only be needed

fifteen days of the year. This implies that load flexibility on the highest demand days can greatly reduce

the need for installed capacity.

In this study, we assess the load flexibility potential of a 1.1°C (2°F) air conditioning set point increase

on high cooling demand days for this district energy system. To do this, we devise a methodology based on

building feature clustering to estimate the likely demand response of all buildings on the campus using the
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Figure 1: 2020 daily cold water duration curve (2018 and 2019 indicated as dashed lines)

average measured demand response for a small set of buildings on the campus to a 1.1°C set point change

under a variety of summer month weather conditions. We then use the resulting demand response estimates

for all buildings to construct a counterfactual annual cooling load duration curve that reflects the impact of

a 1.1°C set point change in all buildings on the campus during the ten highest demand days of the year. We

find a predicted annual peak demand reduction of more than ten percent. This result is encouraging for the

use of building load flexibility as a lower cost alternative to managing demand peaks relative to batteries or

other energy storage devices.

1.2. Review of related work

Estimating demand response potential of residential and commercial buildings has been the topic of a

number of studies in recent years. In contrast to the current study, the majority of research in this area

leverages simulation through physics-based models, rather than experimental methods. Previous research

summarized here has focused on i) estimation and simulation of building-specific demand response potential

under thermostat set point adjustments, ii) characteristics of commercial buildings that are important deter-

minants of flexibility, iii) estimating demand response potential in large building stocks, and iv) clustering

methods for characterizing building stocks.

A large number of studies use the EnergyPlus modeling software to simulate building energy use and

demand response [10, 11, 12]. For example, Li et al. [13] use EnergyPlus and regression models to investigate

the demand response potential of office buildings in Beijing, China. They find an average 10.1% decrease in

energy consumption during working hours under a 1°C set point increase. Liu et al. [14] compare EnergyPlus

simulation results with data from 12 commercial buildings participating in a demand response program in

California. The authors find much higher variation of energy reductions across multiple DR events in field

data compared to simulation.
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Other studies have used EnergyPlus to test the efficacy of less computationally intensive statistical

methods. Yin et al. [6] investigated how piece-wise linear modeling can be a computationally efficient

method to estimate HVAC demand response potential at the hourly level comparing model performance to

a large database of EnergyPlus simulation data. Other physics-based modeling tools have been used, such

as eQuest, used by Cai et al. [15] to estimate HVAC demand response potential in a single three story

building in the Chicago area. The study found only a 1.6% average daily energy savings with a 5°F (2.8°C)

set point increase.

Examples of demand flexibility assessments that employ experimental methods using thermostat set

point adjustments include Aduda et al. [16] where the authors find that an average-sized office building in

the Netherlands reduced peak cooling demand by up to 25% for 20 minutes of operation. An experimental

study on commercial buildings in Northern California found that chiller electricity consumption can be

reduced by approximately 33% over a four hour demand response event while maintaining building interior

temperatures within a defined comfort range [17]. Yin et al. [18] explores pre-cooling strategies for peak

demand reduction in eleven office buildings in California, comparing simulation results to field tests. The

authors find that a strategy with pre-cooling can reduce peak electrical demand by 15-30%.

The results of studies measuring HVAC demand flexibility indicate a high degree of heterogeneity in

demand response potential. Demand flexibility in commercial buildings is likely to depend on a large number

of physical parameters and other non-static factors. A variety of studies have focused on the identification

of the characteristics that are most important for determining HVAC demand flexibility potential.

Certain characteristics of commercial buildings that have been found to be important for determining

building demand flexibility include surface area to volume ratio, window area to external surface area ratio,

insulation of walls and ceiling, thermal mass, and occupancy details [6, 18]. Khalilnejad et al. [19] found

that occupancy and higher peak load relative to base load of buildings were key determinants of energy

use flexibility with increased HVAC thermostat set points. Chen et al. [20] found that thermal mass and

occupant behavior are important determinants of building energy flexibility. A study by Ghahramani et al.

[21] investigated the effect of various structural and operational building characteristics on HVAC demand

response potential through thermostat set point adjustment in commercial office buildings.

Aggregation of demand response across many buildings has the potential to unlock a large amount of

demand flexibility [22]. A variety of techniques have been used in the literature to estimate flexibility at

a large scale. Hoyt et al. [23] use EnergyPlus to demonstrate the large HVAC load savings that can be

achieved in a variety of climate zones. Stinner et al. [24] propose a methodology to measure flexibility in

small groups of buildings. However, the building cluster assumed identical building characteristics and only

included four buildings.

Simple physics-based models can be used in a bottom-up approach to estimate flexibility in building

stocks. Hedegaard et al. [25] use a reduced-order resistance-capacitance model for the space heating demand
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response of 159 homes in Aarhus, Denmark. The authors use a statistical model to update parameters

important for determining demand response potential including window to floor ratio, infiltration rate,

insulation value (U-value), occupant density, and thermal capacity of construction elements.

An alternative to physics-based models is to use building features, as in Reynders et al. [26], where

thermal storage and heating demand flexibility are estimated for the Belgian building stock. The authors

use factors such as age of buildings, renovation status, size of buildings, building structure, and heating

system type to estimate flexibility potential.

Other work has focused on demonstrating the importance of incorporating aggregations of electric loads,

and thermostatically controlled loads in particular, in power system operation to achieve reliable operation of

power grids under high renewable penetration [27]. The benefits and challenges of demand side management

(DSM) generally in the UK context is discussed in [28]. The author points to low utilization of generation and

network infrastructure as an opportunity for DSM (including demand response) to provide efficiency gains

in electricity systems. Callaway [29] investigates the dynamic response of aggregations of thermostatically

controlled loads over short time scales to smooth output from wind generators. The author finds that small

thermostat adjustments can provide significant balancing of short term fluctuations in wind power output

with minimal impact on building temperatures.

Clustering approaches have been used to characterize local, regional, and national building stocks for

simulation and estimation of energy usage performance and flexibility. Some clustering approaches have

taken building characteristics as features upon which to cluster while others have used timeseries data of

energy usage profiles or HVAC system operational state.

A review of demand response potential estimation in building clusters shows that classification and

clustering of buildings based on building characteristics and occupant behavior have been used to estimate

the potential at a large scale [30]. The review suggests that accurate estimation of demand response potential

requires models that account for diversity among buildings, where diversity may be in energy inputs, end-use

equipment, building types, building thermal characteristics, and occupancy details.

Jones et al. [31] describes a software tool (the Energy and Environmental Prediction Model) intended

for sustainable development planning at the urban scale. The clustering technique uses features of buildings

including location, building dimensions, building age, built form (e.g. number of floors and window to

wall ratio), and additional assumptions (e.g. U-values, heating and cooling equipment types) to group

buildings with similar expected energy use patterns. Although computer hardware and software capabilities

have advanced considerably since the publication of this work, the methodology in this study demonstrates

that there exists a precedent for using feature clustering methods in estimating building energy usage and

performance, and provides evidence in academic literature as to building features that are indicative of

energy usage patterns.

A number of studies are based on K -means clustering. Gao and Malkawi [32] employ this method to
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predict building energy performance and find an improvement from the results of their proposed clustering

algorithm over the EPA’s Energy Star approach for energy benchmarking of commercial buildings. Zhan

et al. [33] employ a two-step K -means clustering process to categorize buildings using daily load profiles

and conduct energy benchmarking. The authors quantify operational dissimilarity between buildings as

the Euclidean distance between feature vectors. The method is also used by Petteeue et al. [34] to find

representative residential buildings to estimate energy use flexibility in large building stocks. The authors

use time series data on electricity demand and air conditioning system status (on/off).

1.3. Research contribution

This paper makes three main contributions. First, a methodology is developed to estimate cooling

demand flexibility of a large number of co-located buildings based on their observable characteristics and

measured daily cooling energy demand reduction from a temperature set point increase in a small number of

buildings. Second, the methodology is applied to a real-world district energy system serving 124 buildings.

Flexibility estimates were available from previously published work for six of these buildings, our method

allows us to now provide demand flexibility estimates for all 124 buildings and for the combined district

energy system. Finally, the results of this study provide insights into district energy system capacity planning

and the potential role that thermal demand response from commercial buildings can play in future electricity

systems.

2. Methodology

We estimate the demand flexibility potential in a commercial building stock where air conditioning

demand is served by a district energy system. In a first step, thermostat set point adjustment experiments

were conducted in a subset of the buildings to empirically measure the achievable cooling demand reductions

under a 1.1°C (2°F) daily set point increase. Second, we constructed a dataset of building features for all

buildings in the building stock. Feature data were selected that capture the most important building

characteristics that determine cooling demand flexibility. In a third step, we develop and implement a

methodology to extend the empirical demand flexibility estimates to estimate the flexibility potential of

unobserved buildings. Finally, using these building-level estimates we construct an estimate potential load

reduction for the entire building stock.

In the following subsections we describe the methodology implemented for the first three steps here. The

first step was described in detail in a previous study [35]. In Subsection 2.1 we provide a brief summary

of that work. Subsections 2.2 and 2.3 describe the methodology of the second and third steps here. The

system level estimate results of the fourth step are discussed in Section 4. In Subsection 4.1 we implement

a leave-one-out (LOO) validation process to test the accuracy of the methodology and choose appropriate

model parameters.
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2.1. Estimating cooling demand flexibility of the observed buildings

During the summer of 2021 temperature set point adjustment experiments were conducted in six buildings

in the district energy system under study. All buildings had a business as usual (BAU) upper bound

thermostat set point of 74°F (23.3°C). On treatment days the upper bound of the set point was increased

to 76°F (24.4°C) for the entire day. For a detailed discussion of the experimental setting and results, see de

Chalendar et al. [35].

In that study, the following regression model was estimated to predict the daily cooling load reduction

for each building under the 2°F (1.1°C) set point increase for the day:

log yt = βISP,t + θ0Tt + θ1IW,t + θ2 + ϵt. (1)

Here, observations were at the daily level, indexed by t. yt is the building cooling load for day t, measured

in joules (J). ISP,t is an indicator variable equal to 1 if the buildings set point was increased on day t and 0

otherwise. Tt is the daily mean outdoor temperature (F), measured and recorded onsite. IW,t is an indicator

variable equal to 1 if day t is a weekend day and 0 otherwise. For buildings that were determined to not

have a changing weekend and weekday schedule, the variable IW,t was excluded from the regression. The

parameters β, θ0, θ1, and θ2 are estimated for each of the six buildings by ordinary least squares. Estimates

of the model parameters are indicated by β̂, θ̂0, θ̂1, and θ̂2, respectively. ϵt is a random error term with

mean zero. For more details on alternative statistical models considered and the performance of this model

see [35].

The assumed data generating process and regression structure imply that the value of β̂ provides an

estimate of the mean daily cooling load reduction, as a percent of BAU load, controlling for daily average

temperature and a weekend indicator. In particular, the estimated daily percent load reduction is given by:

100 · (1− exp(β̂)). Values of β̂, standard error (S.E.) of β̂, and the associated estimated percentage demand

reduction for each building are shown in Table 1. In this work, we seek to obtain approximations of β̂ for

out-of-sample buildings for which experimental data is not available.

Building β̂ S.E. Estimated load reduction

BLDG-1 -0.24 0.048 21.3%

BLDG-2 -0.33 0.028 28.1%

BLDG-3 -0.14 0.031 13.1%

BLDG-4 -0.23 0.022 20.5%

BLDG-5 -0.044 0.017 4.3%

BLDG-6 -0.034 0.0092 3.3%

Table 1: Estimated coefficients of the temperature set point treatment for in-sample buildings.
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2.2. Feature Selection

From the values of β̂ reported in Table 1, we observe that there is a high degree of heterogeneity in

demand response potential among the observed buildings, with predicted daily cooling load reductions

ranging from 3.3% to 28.1% for a 1.1°C (2°F) set point change. This result implies that heterogeneity

in demand responses is likely to be present in the 118 remaining buildings in the campus energy system

under study. The experimental buildings differed from each other in a variety of aspects that contribute to

heterogeneity in demand response potential. Some buildings had a high proportion of floor space taken up by

offices, while others have higher proportions of classrooms, laboratories, or library facilities. Buildings also

varied in their energy intensity and ratio of daily maximum demand to daily average demand. In addition,

there was variety in building size, year of construction, building materials, and other characteristics.

In order to extend these experimentally derived demand response results to the entire system, we create

a metric of similarity or dissimilarity of out-of-sample buildings relative to the buildings in the experimental

data set. We hypothesize that an out-of-sample building that is more similar to a certain in-sample building

according to the metric, will tend to have a demand response potential closer to that building than another

building to which it is less similar. This similarity metric is based upon a set of feature data, observable for

all buildings, that is related to building energy demand and potential for flexibility.

We use a vector of features that is intended to capture the most important building characteristics that

determine cooling load flexibility potential. We then use these features to quantify the similarity of out-of-

sample buildings to the observed buildings. A review of relevant literature was undertaken to inform the

selection of building characteristics (Subsection 1.2). Data features were then chosen that can capture these

characteristics to the greatest extent possible given the availability of data.

Nine features were collected for each of the 124 buildings in the system. The nine features are: (1)

“Area”: total floor space of the building (m2); (2) “LAB”: proportion of floor space accounted for by

laboratories; (3) “CLS”: proportion of floor space accounted for by classrooms; (4) “LIB”: proportion

of floor space accounted for by library facilities; (5) “OFF”: proportion of floor space accounted for by

offices; (6) “Intensity”: cooling demand intensity (MJ/m2/day); (7) “Year”: year of building construction

completion; (8) “Peak”: metric of daily load increase relative to daily average load; and (9) “SA-Vol”:

surface area to volume ratio.1

2.3. Estimating similarity scores

To quantify the similarity of unobserved buildings to those in the experimental dataset we have developed

a “similarity score” that assigns an estimate of β̂i for all remaining buildings on the campus, which ultimately

1“Peak” is defined as the average of (ak − bk)/ck across all summer weekdays indexed by k. Here ak: maximum hourly load

on day k; bk: minimum hourly load on day k; and ck: average daily load on day k.
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allows us to estimate demand response under a 1.1°C set point change at the campus level. The calculation of

this similarity score draws upon the logic of K -means clustering in the machine learning literature. K -means

clustering is an unsupervised learning approach to partition a set of data into sets of similar observations

based on individual feature vectors [36]. The premise is that a non-experimental building that is closer,

measured by Euclidean distance in the feature space, to one in-sample building is expected to behave more

like that building than a building further away.

The computation of similarity scores appears in Equations (2)-(4).

γi,s =
∥∥xi − xs

∥∥ (2)

πi,s =
min(γαi,·)

γαi,s
(3)

π∗
i,s =

πi,s∑
s∈S πi,s

(4)

Let S be the set of observed, in-sample buildings and let I be the set of all buildings in the system where

S ⊂ I. Let β̂s for all s ∈ S represent the values of β̂ for the in-sample buildings, where point estimates and

asymptotic distributions were estimated via Equation (1). Let β̂i for all i ∈ I\S represent the unknown

value of β̂ for each out-of-sample building. xi is an m-element vector of building feature data (where m

is the number of features) for building i. The feature data is normalized to have zero mean and standard

deviation 1 across all buildings in the dataset. Feature data used in this analysis are discussed in greater

detail in Section 3.

In (2) for a given out-of-sample building, i, the Euclidean distance in the feature space is computed

between that building and each in-sample building, s, and denoted by γi,s. Values πi,s are computed in (3),

note that a value of 1 is assigned to the element associated with the closest in-sample building while values

of less than or equal to 1 are assigned to the elements associated with the other buildings. Finally, in (4)

the vector πi,· is normalized such that
∑

s π
∗
i,s = 1. Here, α is an important tuning parameter that serves as

a penalty on distance from building i to building s, the properties of which are discussed in greater detail

below.

Once a similarity score vector has been computed we then compute for all out-of-sample buildings the

following estimate of β̂, which is a weighted average of the in-sample estimated responses, with relative

weighting given by the vector π∗
i,·:

β̂i =
∑
s∈S

π∗
i,sβ̂s (5)

The estimate β̂i has the following properties with respect to the tuning parameter α:

1. α = 0 results in a simple average of β̂s ∀s ∈ S.

10



2. α = 1 results in a weighting of β̂s ∀s ∈ S inversely proportional to Euclidean distance in the feature

space.

3. As α → ∞, π∗
i,s → 1 for the building s that is closest in the feature space to building i measured by

Euclidean distance, while π∗
i,s → 0 for all others (i.e. the estimated response of building i tends to

exactly that of the building to which it is closest).

Finally, we may apply weighting to the relative importance of each feature by replacing Equation (2)

with Equation (6):

γi,s =
∥∥Λ(xi − xs)

∥∥ (6)

Here, Λ is a diagonal m × m matrix. Let λ = diag(Λ) where λ is an m-element vector of weights

associated with each feature in the vector xi. Larger, and smaller, values of λ allow for features to have

more, or less, influence in the similarity calculation, respectively. This weighting may be applied if the

analyst has reason to believe that certain features may be more important than others in determining

demand response potential. Note that using the unweighted version in Equation (2) implicitly assumes that

each feature is equally important in determining demand response potential.

3. Overview of data

The data used in this analysis were the following: i) daily cooling demand served from the CEF (2017-

2021, inclusive); ii) daily cold water demand for each of the 124 buildings in the district energy system for

the same time horizon; and iii) a dataset of features associated with the buildings in the energy system.

3.1. Daily system load served

The daily total system cooling load served is a key metric of interest. This is the total amount of energy

delivered via chilled water to serve the cooling demand of the district energy system. Here, daily values are

considered because during hot summer days cooling load in afternoon hours leads to the greatest demand

on the system while water can be chilled overnight to refill the cold water storage tanks. Thus a daily cycle

is the most appropriate for determining the maximum capability of the system to serve cooling demand.

Data observations are collected at the hourly level and then summarized at the daily level. Over the

five year period five hourly observations were unavailable and filled using linear interpolation. Six days were

known to have some amount of curtailed load, and counterfactual non-curtailed loads were approximated

using a linear model described in the appendix.
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3.2. Building level demand data

Hourly cooling demand was collected for all 124 buildings in the study for all hours of the years 2017-

2021, inclusive. Data were summarized at the daily level. Procedures for dealing with missing data are

described in Appendix A. Table 2 provides a summary of the building level cooling load data over the five

years.

Statistic 2017 2018 2019 2020 2021

Mean 17.54 (43.02) 16.80 (38.79) 18.93 (47.55) 19.35 (53.88) 17.56 (48.00)

P10 8.86 (28.24) 7.85 (22.52) 8.99 (25.87) 9.13 (29.40) 8.79 (27.50)

Median 15.86 (41.02) 15.75 (38.23) 16.59 (43.63) 17.46 (51.39) 15.47 (44.29)

P90 28.19 (61.51) 27.53 (58.23) 32.02 (76.01) 31.90 (82.36) 28.80 (73.78)

Table 2: Summary of building level daily cold water demand data (GJ/day). Values indicate mean (standard deviation) of

the specified statistic across the 124 buildings for the specified year. “P10” and “P90” indicate the 0.1 and 0.9 quantiles,

respectively.

3.3. Building feature data

Feature data were collected for all in-sample and out-of-sample buildings in the district energy system.

Feature values for the in-sample buildings and a summary of the building feature data are displayed in

Table 3. The building feature data were normalized to have mean zero and standard deviation of one before

computing similarity scores as described in Subsection 2.3.2

Figure 2 displays the correlation matrix of the building feature data. The associations here show that

in our dataset buildings with high surface area to volume ratios also tended to have higher cooling energy

intensity. Buildings with high surface area to volume ratios also tended to be smaller buildings, measured

by floor space. Buildings with high summertime peaking tended to have lower cooling energy intensity.

Buildings with a high proportion of office space tended to be older, and buildings with a high proportion of

offices tended to have less research laboratory space.

4. Results

In this section we present the results of the estimation procedure with feature weighting as described in

Subsection 2.3. First, we discuss the process used for selection of model parameter value α and weighting

vector λ. Secondly, we provide an overview of the estimates of demand response potential for buildings

2Surface area to volume ratio was approximated using number of floors and floor area by story. We assume the building

footprint to have equal length and width with footprint area defined as the average of floor area by story and and an assumed

story height of 4.27 m (14 feet).
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Building/ Area LAB CLS LIB OFF Intensity Year Peak SA-Vol

Statistic (m2) (prop.) (prop.) (prop.) (prop.) (MJ/m2/day) (ratio) (ratio)

Feature values for observed buildings

BLDG-1 13,427 0 0 0.005 0.267 0.544 2000 2.27 0.057

BLDG-2 2,640 0.118 0 0 0.423 0.418 1893 2.23 0.105

BLDG-3 15,768 0.061 0.083 0.307 0.133 0.228 1966 2.02 0.048

BLDG-4 9,780 0.202 0.036 0 0.314 0.899 1998 1.63 0.060

BLDG-5 6,975 0.196 0.030 0 0.361 4.267 1965 1.05 0.061

BLDG-6 7,108 0.297 0 0 0.305 1.912 1963 0.70 0.061

Summary statistics for all building in system (N = 124)

Mean 8,312 0.134 0.034 0.037 0.265 2.456 1969.0 1.57 0.087

P10 1,143 0.000 0.000 0.000 0.022 0.481 1901 0.63 0.054

Median 5,280 0.014 0.000 0.000 0.230 1.355 1979 1.53 0.074

P90 15,920 0.439 0.083 0.051 0.543 5.115 2013 2.37 0.142

Table 3: Feature values for observed buildings and summary statistics of feature values for all buildings in the system (N=124).

LAB: research laboratory, CLS: classroom, LIB: library facilities, OFF: office, SA-Vol: surface area to volume ratio, prop.:

proportion.

in the district energy system. Finally, we discuss the simulation of a counterfactual demand response

program under global temperature set point adjustments across all buildings in the system over the data

time horizon (2017-2021, inclusive) with emphasis on demand reduction for the highest demand year, 2020.

All calculations presented were implemented in the Python programming language (version 3.8.13) with the

following packages: Numpy (version 1.21.1), Pandas (version 1.3.1), and Scikit-learn (version 0.24.2) [37].

4.1. Leave-one-out validation of parameter values

The α parameter in the above calculation is an important tuning parameter that penalizes the distance

of an out-of-sample building to the in-sample buildings. To determine the values of α and λ that are most

appropriate for this study we have implemented a LOO validation process. However, because we only have

six in-sample buildings upon which we can train our data, we must be sensitive to the possibility of overfitting

to our observed data. In this subsection we discuss how we select a vector λ, and then select our preferred

value of α.

To implement the LOO validation process, for each building s ∈ S we remove this building from the set

S and compute the predicted β̂ for that building for a range of values of α using the proposed estimation

algorithm and for a set of candidate values of λ. The first candidate value of λ is “uniform weights” where

each value in the vector is 1, corresponding to the unweighted formulation in Equation (2). An additional
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Figure 2: Correlation matrix of feature data (LAB: research laboratory, CLS: classroom, LIB: library facilities, OFF: office,

SA-Vol: surface area to volume ratio)

10 candidate values of λ were tested as “weighted” vectors where weights were chosen based on assumed

importance of the features. The set of candidate weight vectors was developed by the authors and is intended

to capture the relative importance of features in determining flexibility. The specific values are qualitatively

based upon a review of relevant literature and researcher judgement based on familiarity with the field. See

Appendix B for the specific values used in the candidate weight vectors and additional discussion.

Figure 3 displays the results of the tuning procedure. Note that the names (1 to 10) of weight vectors

are simply labels and do not indicate ordering. For each value of alpha the error is defined as the difference

between the actual value of β̂ for the building that was estimated with experimental data, and the value of

β̂ that was computed with the similarity score vector computed as in Subsection 2.3. For a given value of

α the square of this error is computed and averaged across the six buildings, and the square root is taken,

resulting in the root mean squared error (RMSE) pictured in Figure 3. In the figure, the RMSE for uniform

weights and the selected weights are shown in bold.

For all values of α, all candidate weight vectors had lower RMSE than the uniform weights vector. For

values of α less than 4 we found similar RMSE in the LOO procedure across the ten candidate weight

vectors with “weights 5” resulting in the lowest RMSE for these values. For high values of α (greater than

31) “weights 5” also had the lowest RMSE. This weighting vector achieved the lowest RMSE of 0.0688 at

α = ∞. As discussed in Subsection 2.3, α = ∞ results in a matching algorithm that assigns one of the

six observed β̂s values to each of the unobserved buildings. However, in the building stock, we have high

heterogeneity across features (building vintage and size, for example), and some buildings may be further

away (as measured by Euclidian distance) in the feature space than those included in the observed set. Thus

a high penalty on distance in the feature space is likely to overfit to the small set of observed buildings. For

these reasons we expect that the actual response will be better represented by some weighted average of the
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β̂s given by a lower value of α. See Appendix C for more discussion on how the selection of α affects the

estimated demand response potential values, and see Appendix D for a sensitivity analysis that tests how

the choice of α affects the system-wide flexibility result.

The vector “weights 1” resulted in lowest RMSE for values of α from 4 to 31, and resulted in minimum

RMSE at α = 14. In Figure 3 we can see the lower RMSE of the “weights 1” vector over this range. Because

this vector achieved the lowest RMSE for this range of values of α this was the weighting vector selected to

be used for the remainder of the analysis. The values of the selected weights are displayed in Table 4. The

uniform weights vector resulted in minimum RMSE at α = 6.

Figure 3: Root mean squared error (RMSE) versus values of parameter α (“uniform weights” and the selected weight vector,

“weights 1”, pictured in bold)

Area LAB CLS LIB OFF Intensity Year Peak SA-Vol

1.0 0.5 0.5 0.5 0.5 2.0 1.0 1.5 1.0

Table 4: Values of λ for the selected weighting vector (LAB: research laboratory, CLS: classroom, LIB: library facilities, OFF:

office, SA-Vol: surface area to volume ratio)

For the minimum error values of α we present the predicted versus actual values of β̂ in Figure 4. In

the figure we observe that the selected weighted prediction outperforms the uniform weight predicted values

for four of the six buildings. The only building for which the weighted prediction does significantly worse is

BLDG-3. Note, that in this formulation the prediction is a weighted average of the other buildings. Here,

across the feature vector BLDG-3 was more similar to the high response buildings than the low response

buildings and resulted in this error. For BLDG-2, we observe that the estimation procedure results in a

considerable under-estimation of flexibility, however, because the estimate is a weighted average of the five

remaining buildings, the estimate can not be closer than the value of the second largest response building.

However, the estimate does improve under the weighted estimation process.
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Figure 4: Predicted versus actual values of β̂ (uniform weight: α = 6; weighted: α = 14)

The results of the LOO tuning procedure suggest that the similarity score procedure is likely to provide

reasonable estimates of demand flexibility in out-of-sample buildings. These results also suggest that the

weighted score is likely to outperform the unweighted version, however, the high α value corresponding

to minimum RMSE applies a very high penalty on distance in the feature space, closely corresponding to

a matching algorithm. Due to the small number of in-sample buildings and the risk of overfitting to the

observed sample, we use α = 3 for the analysis in this paper with weighting vector 1. In Appendix C we

provide more details about the choice of this α value, and in Appendix D we provide a sensitivity analysis

to investigate how the choice of parameter value α and weight vector λ affect our results.

4.2. Estimates of building-level response potential

Values of β̂ were estimated for all 118 unobserved buildings in the system using α = 3, and the weighting

vector λ as defined in Subsection 4.1. The corresponding estimated load reduction (%) under a 1.1°C (2°F)

daily set point increase was computed for each building in the system.

Figure 5 displays a histogram of estimated demand response potential for each of the 124 buildings in

the system, including the six observed buildings. The average estimated response across all buildings in the

system (including observed experimental buildings) was 16.1% with a standard deviation of 5.3%, and a

median response of 16.0%. Half of all estimated responses fell between 12.6% and 19.3%, while 90% of all

estimated responses fell between 7.0% and 25.2%. The minimum and maximum estimated response values

were those of the minimum and maximum responding buildings in the observed sample with values of 3.3%

and 28.1%, respectively.

Table 5 reports the pairwise correlations between the estimated demand response and building features.

The high correlation between the “Peak” feature and the estimated demand response potential indicates

that for buildings that had large peak to trough load relative to average load on summer weekdays, we

estimated higher demand response potential, with a relatively high correlation value (0.796). This result
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Figure 5: Histogram of estimated building demand response potential for α = 3

aligns with the expectation that buildings that tend to have greater afternoon increases in cooling demand

will have more potential to reduce that demand with a thermostat set point increase. In addition, buildings

with a high proportion of office space tended to have higher estimated demand response potential but with

a relatively weaker linear association. Meanwhile, buildings with higher energy intensity and buildings

constructed more recently tended to have lower estimated demand response potential. Note that both of

these features were negatively correlated with the “Peak” value (see Figure 2).

Area LAB CLS LIB OFF Intensity Year Peak SA-Vol

-0.123 -0.123 0.077 -0.087 0.345 -0.278 -0.364 0.796 0.118

Table 5: Correlation of building characteristics and estimated demand response (α = 3) (LAB: research laboratory, CLS:

classroom, LIB: library facilities, OFF: office, SA-Vol: surface area to volume ratio)

4.3. System-wide demand response potential

Using the demand response estimates presented in Subsection 4.2 we can estimate the load reduction

potential of a counterfactual demand response program in the district energy system. We assume that the

load control action under this demand response program is a system-wide 1.1°C thermostat set point increase

on the 10 highest demand days of the year. We then construct a modified load duration curve to visualize

maximum load before and after the demand response program. The pre- and post-demand response load

duration curves for 2020 are displayed in Figure 6 for the top 100 load days of that year.3 Note that although

the experiments discussed in Subsection 2.1 were conducted in 2021, we focus on the 2020 calendar year in

this section. This is because 2020 experienced the highest daily cooling demand over the time horizon and

is thus most relevant for design decisions relative to system installed capacity. In this analysis, we assume

3The highest demand days in 2020 are of particular importance in this analysis. Note that none of the days in 2020

experienced known curtailments where load served was estimated as described in Subsection 3.1.
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that the 10 highest demand days of the year are known, and these are the days in which demand response

is implemented. In practice, the highest demand days must be forecasted in advance, but we do not address

the issue of demand forecasting in this work.

Figure 6: 2020 actual and counterfactual load duration curves, top 100 days, with 95% confidence interval pictured (BAU:

“business as usual”). “Min. Effect” and “Max. Effect” indicate the load duration curve that would result if all unobserved

buildings have the demand response potential of the building with the smallest (BLDG-6) and largest (BLDG-2) estimated

response, respectively. The top panel shows the counterfactual demand in the same order as actual demand. The bottom panel

shows the counterfactual demand reordered from highest to lowest.

The 2020 calendar year experienced the highest daily cooling load over the time horizon reaching 5.588

TJ (441.3 kiloton-hours). Under the demand response program, estimates indicate that maximum daily load

would be reduced by 13.47% to 4.835 TJ, with a 95% confidence interval of (11.70%, 15.24%). We estimate

the asymptotic distribution of the counterfactual load using the delta method, as described in Appendix E.

This confidence interval treats the values of πi,· as fixed constants, capturing the asymptotic variance of the

estimates of β̂s ∀s ∈ S.

In the top panel of Figure 6 we see the effect that the demand response program has on the 2020 demand

curve.4 At the left of the plot, where the orange line is shifted downward, load has been reduced due to the

4In the bottom panel we have reordered the counterfactual load duration curve to show how the load duration curve changes
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load control action. The percent reduction for each day will differ slightly due to variability in the proportion

of load each building accounts for on that day. For days that were not in the top 10 load days, the load

duration curve remains unchanged. The shaded area in the plot denotes the 95% confidence interval for each

day. The dashed lines denote the modified load duration curve if all unobserved buildings were to have the

estimated response of the least and most responsive building in the observed sample, labeled as minimum

and maximum effect, respectively.

An important point illustrated in the load duration curves in the top panel of Figure 6 is that the

steepness of the curve on the top days enables a large reduction in maximum daily demand with a small

number of demand response days. Observe that the daily load on the highest demand day that is not a

demand response day is lower than the estimated demand on the highest demand response day after the load

reduction. For 2020, we have pictured 10 days of demand response, but this still would have been true with

only 8 days of demand response. This means that if the objective is to reduce peak daily load, the amount

of load reduced is the full amount reduced on the highest BAU demand day. If the load duration curve were

not as steep, with a similar amount of load reduction, daily load on the highest non-demand response day

may be higher than all demand response days. In this case the maximum daily load reduction would be the

difference between the maximum BAU load, and maximum daily load of the non-demand response days.

The bottom panel of Figure 6 shows what the load duration curve would look like after demand response,

ordered from highest to lowest load. In Section 1 it was noted that the 2020 BAU daily load duration curve

suggested that 10% of system capacity would be used only on five days of the year, and 20% of capacity

needed only on 15 days of the year.5 In contrast, if this demand response program were implemented and

the system were designed for the post-DR load duration curve, 5.6% of system capacity would be used on

only five days, while 11.4% of capacity would be necessary for the top 15 days.

In Appendix D we provide a sensitivity analysis that includes results for selected values of α and results

for maximum daily load reduction for all years in the time horizon. The estimated reduction in peak daily

load in 2020 ranged from 9.98% (α = ∞) to 15.46% (α = 0). Estimates for peak daily load reduction varied

little across different years for a given value of α. See Appendix D for more details.

5. Discussion

5.1. Demand response program design requires system level estimates

With cooling demand growth over time due to expansion of the system and/or increasing temperatures

as a result of climate change, district HVAC system operators may be faced with a decision to invest in

under this program.
5This calculation is under the assumption that the system was designed precisely for the maximum load day of the year.
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costly capacity upgrades or implement a demand response program to defer these upgrades. In the short-

run, because of the impossibility of a capacity increase, some systems may be faced with the possibility of

forcibly curtailing the provision of cooling services when capacity limits are exceeded, and a demand response

program may be a preferable alternative. However, implementing thermal demand response in a district

energy system can be challenging. In addition, even if thermostat set point changes are small, deviating

from BAU set points can impose some degree of inconvenience on building occupants. The benefits of such a

program can be substantial, and to quantify these benefits to justify its implementation, a reliable estimate

of the magnitude of system-wide demand reductions is needed.

We propose a methodology to compute such estimates based on a series of set point changes in a small

subset of buildings and a set of building features for all buildings in the energy system. In many district

energy systems, such as the one in this study, there is a high degree of heterogeneity across buildings in

the system. This heterogeneity in structural characteristics and operational features results in significant

heterogeneity across buildings in the magnitude of the demand response for the same thermostat temperature

set point increase. In the observed buildings, the demand response potential estimates ranged from 3.3%

to 28.1% cooling demand reduction under a 1.1°C (2°F) daily cooling set point adjustment. This large

difference across buildings in demand response potential makes it important to determine if the unobserved

buildings have high or low flexibility potential. Leveraging building feature data to extend the experimental

results to the entire building stock leverages the heterogeneity in building characteristics to estimate savings

in a large, heterogeneous group of buildings.

The methodology proposed here is a data-driven alternative to physics-based models and provides certain

advantages. First, we measure actual, realized energy use changes in the building. Second, physical models

require a large amount of information about all buildings to reliably estimate the demand reduction for a

given building, while our methodology makes use of available data without the need for assumptions about

physical model parameters.

The methodology proposed here, may also be used to target demand response implementation under a

budget constraint that does not allow for implementation of demand response across the entire system. If a

budget constraint allows for implementation in only a subset of buildings, the methodology can be used to

identify the high demand flexibility buildings in the system.

5.2. Load duration curves inform demand response potential to reduce system capacity needs

In many systems, adjusting thermostats on a small number of days can lead to a large reduction in

capacity needs. Inter-annual variability in cooling demand will mean that the highest demand years will

require the most days of load flexibility while lower demand years require less, and some years needing no

intervention at all, to maintain the daily cooling demand below an available capacity limit.

By examining annual daily cooling load duration curves we can see how load control can reduce capacity
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needs in the system under study. Figure 7 displays daily cooling load duration curves (top 150 days) for

2017-2021. Indicated in the plot are lines for the minimum installed capacity necessary to serve all load both

with and without a demand response program, that includes the load control action of a system-wide 1.1°C

set point adjustment. Over this time horizon, 2020 was the year with highest daily demand with a peak

daily demand of 5.588 TJ. This peak cooling demand day over the time horizon determines the minimum

capacity needed to reliably serve cooling demand. Results of this study suggest that implementing a 1.1°C

set point increase on that day would reduce cooling demand by 0.753 TJ to 4.835 TJ. This result implies

that the minimum system capacity required is 15.6% higher without a demand response program when

compared to the reduced cooling demand under the program.

Figure 7: Load duration curves 2017-2021 with estimated peak reduction.

The load duration curves pictured in Figure 7 show how inter-annual variability and a small number

of extreme demand days drive capacity needs over the time horizon. In addition, the figure shows that

achieving a large reduction in capacity needs would require implementing thermostat set point adjustments

on a very small number of days over the five year period. The load duration curve for 2020 exhibits a steeply

declining slope moving to the right from the vertical axis suggesting that only eight demand response days

would need to be called to reduce demand on all days of that year below the 4.835 TJ threshold. We may

also observe that with only five days of demand response in 2019, two days in 2017, and no required demand

response in 2018 or 2021, the system could have maintained maximum daily load under this level. This

suggests that with only 15 demand response days over the five year period from 2017-2021, the system could

have maintained installed capacity needs below the lower 4.835 TJ level. With installed capacity costs for

such district energy system facilities measured in the millions of dollars this implies a large financial benefit

for an infrequent load control action.

The authors note that the estimates here assume perfect foresight and under real-world implementation
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a larger number of demand response days may be required due to forward-looking uncertainty. The analysis

also does not account for load growth over time or changing climate patterns. However, the result demon-

strates that an infrequent load control action with low impact to occupants can have a very meaningful

impact on system capacity needs.

5.3. Leveraging demand-side flexibility in electricity systems with high renewable deployment

In California, high deployment of solar generation has led to electricity supply challenges in the early

evening hours on high demand days. When solar generation comes offline while electricity demand is still

high, a large amount of ramping capacity, supplied mostly by natural gas peaking units, is needed to balance

supply and demand. Limited dispatchable capacity led to forced load curtailment during the summer of

2020 [2]. Mobilizing demand-side flexibility through intelligent HVAC control can be a valuable resource

as the California Independent System Operator (CAISO) and other electricity system operator territories

continue to experience higher penetration of renewable generating technologies.

In the system under study, days in which the local district energy system is experiencing high cooling

demand conditions correspond closely to the days in which the bulk grid is most in need of additional

capacity or demand reductions. These conditions tend to occur on hot summer days when air conditioning

demand is high. Figure 8 displays daily average day ahead Locational Marginal Price (LMP) in the CAISO

market (24 hour average of DLAP-PGAE) and daily CAISO peak net load for all days of 2020.6 CAISO net

load is defined as system load less wind and solar generation. The points in red indicate the top ten cooling

load days for the district energy system. We observe in the figure that these highest demand days are days

in which the CAISO peak net load is very high and prices are high. If a demand response program were

designed such that thermal demand response days were called on the ten highest demand days in the local

system, not only would the system be reducing installed capacity requirements, but the daily reduction in

electricity demand would be providing needed demand reduction to the CAISO system.

The university campus in this study reaches peak hourly electricity demands of over 50 MW during

the summer, with nearly 20 MW of this accounted for by the CEF chillers on high cooling demand days.

Reduced demand for chilled water on high demand days enables flexibility in cold water chiller operational

schedules. The on-site cold water storage provides thermal energy storage enabling intertemporal shifting

of electricity demands and the ability to greatly reduce system electricity demand when it is most valuable.

In recent years, deployment of lithium ion batteries for stationary storage has increased rapidly, and costs

of battery storage have fallen significantly. Battery energy storage systems are likely to be an important

component of a future grid with high deployment of renewable energy technologies. However, despite falling

costs, it remains extremely costly to provide all needed demand side flexibility with battery systems.

6“DLAP-PGAE” is the Pacific Gas and Electric default load aggregation point.
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Figure 8: 2020 Day ahead LMP versus daily CAISO peak net load with top 10 campus cooling load days in red (LMP is

24-hour average of DLAP-PGAE; net load is defined as system load less wind and solar generation). Data source: CAISO

In this study, the 2020 load control simulation indicated a daily load reduction of 0.753 TJ on the highest

demand day for the 24 hour period. The CEF in this system includes both conventional chillers and heat

recovery chillers. The overall efficiency of the CEF ranges from 47.39 - 69.90 kWh per GJ.7 This suggests

an approximate electrical energy reduction of 35.68 - 52.63 MWh for the day. As of this writing, costs of

lithium ion batteries were approximately $130 - $140/kWh (hardware costs only) [38]. We also consider a

range of discharge efficiencies from 92% - 100%. For this range of assumptions, the system would require

a battery with capital investment cost of $4.6 to $8.0 million USD to provide an equivalent amount of

demand response. The authors note that this is a very rough estimated range, simply to provide an order

of magnitude comparison. For example, this figure does not include balance of system costs, operating

costs, or cost of charging. It also does not consider the additional services that a dispatchable energy

storage system can provide. However, in comparison to a battery system, the costs of implementing thermal

demand response in commercial buildings can be very low. This high-level estimate suggests that achieving

demand-side flexibility in electricity systems needed to enable large scale renewable deployment at lowest

cost should include a strong emphasis on mobilizing thermal demand response programs.

6. Conclusion

Thermal demand response in commercial buildings holds potential to provide large amounts of needed

demand-side electricity demand flexibility as electricity grids in the United States and around the world

7The efficiency range of the CEF stated here is based on both the engineering design documentation of the CEF, and an

estimate based on observed operational data.
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decommission conventional fossil fuel generators in favor of renewable energy resources. Moreover, in many

district energy systems where capital expenditure for installed capacity is considerable, a large proportion

of installed capacity is used on only a small number of days. Demand flexibility through temperature set

point adjustments can be implemented where even relatively small and infrequent temperature set point

adjustments can translate into large savings while simultaneously providing valuable demand flexibility.

Methods are needed to estimate the specific savings that can be achieved in systems, in particular where

high heterogeneity exists among buildings in the system under consideration. Such estimates are required to

enable relevant stakeholders to balance potential benefits against costs of implementation. In this work, we

have demonstrated a methodology by which experimental measurements of load flexibility can be extended

to the level of a district energy system. The methods presented here are not specific to district energy

systems and may be implemented for large building stocks to estimate demand response in any well defined

group of buildings. The methodology can be generalized to any quantitative or categorical building features

that may be available in other settings, and with an increased number of buildings in the observed set, the

estimates of demand response potential will increase in accuracy.

Under a range of assumptions, we find that the load control action of a system-wide 1.1°C (2°F) thermo-

stat set point increase results in an estimated reduction in peak daily cooling load for the highest demand

day of the year of at least 10%. Implementing this load control action would accrue savings through re-

duction of investment on installed capacity at the district energy system’s CEF, reduction of energy costs,

and potential reduction of demand charges. Moreover, we have shown that the highest demand days in the

district energy system tend to correspond to the days in which generation capacity is most scarce in the

bulk grid. Such a demand response program would then also reduce demand during the times in which this

capacity is most needed on the grid.

The methodology presented in this study estimates cooling demand flexibility in a large number of

unobserved buildings based on observable features and results of real-world flexibility experiments in a small

number of observed buildings. This can be a valuable complement to simulations of building energy behavior

using physics-based models. An interesting area of study that we leave for future work is to integrate building

simulation tools and empirical, data-driven methods. Details of district energy system operation under load

control actions, such as investigating the efficiency impacts of dynamic set point adjustments, will also be

an interesting area of research.

In this study we have not investigated the effect of set point adjustments on occupant comfort and this

will be a valuable area of future research. Moreover, here we have limited our attention to a 1.1°C thermostat

set point increase universally implemented across all buildings in the system. In future work we plan to

investigate additional load control actions including set point changes of greater or lesser magnitude and

heterogeneous set point changes that differ by building. These additional actions are likely to enable deeper

load reductions while minimizing the costs imposed on building occupants.
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Appendix A. Methods for data cleaning and completion of raw building data

In this study we use real-world energy usage data over five years (2017-2021, inclusive) from two data

sources: 1) cold water delivered to the system by the CEF of the district energy system and 2) the cold water

consumption measured at each of 138 meters at 124 buildings in the system. The data for both sources are

in units of ton-hours and recorded at the hourly level. A number of data points were missing or unreliable

due to recording errors or other events. In this section we describe the processes that were used to verify

the validity of available data and estimate data points that were unavailable.

For the CEF the dataset was nearly complete. In Section 3.1 it was noted that only five hourly data points

were missing for the entire time horizon and filled using linear interpolation of neighboring datapoints. A

sum of hourly data for each day was computed to find the daily cold water served for each day. For

six days where some unknown amount of load curtailment occurred, a linear model was used to estimate

counterfactual load:

zt = ν0 + ν1Tt + ηt (A.1)

where zt is the daily CEF load (ton-hours) on day t, Tt is the daily average temperature, and ηt is an error

term with mean zero. The model was fit with all available data points (excluding curtailment days), and

the estimated parameters were used to compute expected load for those days. Log-linear and quadratic

models were also tested. The linear model was selected to complete the dataset because it was both the

most accurate and the most conservative of the models.

For the 138 meters at the 124 buildings served by the cold water loop, hourly cooling energy delivered

is recorded at the point of delivery to the building. Here the difference in cold water temperature in the

send and receive pipes and flow rate are measured to compute cooling energy delivered, recorded in units of

ton-hours. A number of data points were not available due to data write failure for unknown reasons. Any

data points that were in excess of three times the P99 value were assumed to be erroneous and discarded.

For data points not available, wherever three or less consecutive hours were identified the values were

linearly interpolated. For buildings where cold water service curtailments where known to have occurred,

or temperature set point increases were implemented, these data points were discarded.

For the unavailable data points, a random forest model was implemented to estimate missing values

at the hourly level. The features used to fit the random forest model were CEF hourly cooling demand

served, hourly temperature (measured onsite), year indicator variables, month indicator variables, hour
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indicator variables, and weekday/weekend indicator variables. In the completed dataset 4.3% of total load

was accounted for by estimated data points over the study time horizon. These hourly data were then

summarized at the daily level for a complete dataset of daily cooling load for each building.

As noted above, the CEF cooling demand served dataset was nearly complete. In order to ensure that

the building level data conformed to the CEF level data a scaling multiplier was applied to the daily building

data such that the sum of building data would precisely match the CEF data. The same scaling factor was

applied to all buildings with one scaling factor per day. The mean scaling factor was 0.969, with standard

deviation of 0.032. Data in units of ton-hours were converted to joules in the main text of this study.

Appendix B. Selection of weighting vector λ

In Section 4.1 we discuss the results of the tuning procedure by which we select the weighting vector λ.

Two possible approaches to choosing the weighting vector are: i) optimize for weights that minimize the

validation RMSE, or ii) test a set of candidate weights and choose the candidate vector that minimizes the

validation RMSE. We have chosen the latter approach due to the concern of overfitting to the small sample

of six observed buildings. We developed a set of 10 candidate weight vectors and chose the best performing

(in terms of RMSE) as the preferred weight vector.

The candidate weighting vectors are displayed below in Table B.6. The features “LAB”, “CLS”, “LIB”,

and “OFF” all were indicators of the occupancy, equipment, and types of operations in the buildings and

thus were all equally down-weighted across the candidate vectors. The review of literature suggested that

“Intensity” and “Peak” were relatively important features in predicting cooling demand flexibility and thus

received higher weights across most candidate vectors [6, 18, 19, 20, 21]. Candidate vector 1 achieved the

lowest RMSE for moderate values of α (Figure 3) and was thus the chosen weighting vector.

Appendix C. Selection of α parameter value

The value of the tuning parameter α applies a penalty on distance in the feature space when computing

estimated values of β̂ for the unobserved buildings. Under the tuning procedure described in Section 4.1 we

found that a value of α = 14 achieved the lowest RMSE for the chosen weighting vector. However, due to

concern that a high α value will lead to overfitting to the small number of observed buildings we selected

α = 3 as our preferred parameter value.

Figures C.9 - C.16 display histograms of estimated daily building cooling demand flexibility (%) for

selected values of α under the chosen weighting vector. In Figure C.9 we observe that the parameter value

α = 0 results in a simple average of observed buildings assigned to all unobserved buildings. As the value of

α increases there is an increased penalty on distance in the feature space when computing the estimates. At

the limit when α approaches infinity, the calculation becomes a matching algorithm where each unobserved
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Candidate Area LAB CLS LIB OFF Intensity Year Peak SA-Vol

Index (m2) (prop.) (prop.) (prop.) (prop.) (MJ/m2/day) (ratio) (ratio)

1 1 0.5 0.5 0.5 0.5 2 1 1.5 1

2 1 0.5 0.5 0.5 0.5 1 1 1 1

3 1 0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5

4 1 0.5 0.5 0.5 0.5 1.5 1.5 2 1

5 1.5 0.5 0.5 0.5 0.5 1 1 2 1.5

6 1 0.25 0.25 0.25 0.25 2 1 1.5 1

7 1 0.25 0.25 0.25 0.25 1 1 1 1

8 1 0.25 0.25 0.25 0.25 1.5 1.5 1.5 1.5

9 1 0.25 0.25 0.25 0.25 1.5 1.5 2 1

10 1.5 0.25 0.25 0.25 0.25 1 1 2 1.5

Table B.6: Definitions of candidate feature weighting vectors. LAB: research laboratory, CLS: classroom, LIB: library facilities,

OFF: office, SA-Vol: surface area to volume ratio, prop.: proportion.

building is assigned the flexibility estimate of the building to which it is the closest in the feature space.

This is shown in Figure C.16.

Figure C.15 displays a histogram for α = 14. Although this value achieved the lowest RMSE, in the figure

we observe that the relatively high tuning parameter led to a strongly multi-modal distribution of estimated

effects. Due to concern that this may lead to overfitting to the small number of observed buildings, we chose

to select the parameter value that resulted in a nearly bell-shaped distribution of estimated flexibility.

Parameter values α = 2 and α = 3 (Figure C.11 and Figure C.12) were the values for which the estimated

flexibility values most closely approximated a bell-shaped distribution. Parameter value α = 2 did not result

in any estimated flexibility values in the range of 4.4% to 8.7%, and in addition α = 3 had a lower RMSE

in the LOO tuning process. Therefore we selected α = 3 as our preferred tuning parameter value. We

investigate the effect the choice of tuning parameter value has on our results in Appendix D.

Appendix D. Sensitivity Analysis

A sensitivity analysis was conducted to investigate the degree to which the choice of the parameter value

α and weight vector λ affected our results. To test the sensitivity to the selected α value, we estimated

system-wide peak load reduction under a range of selected parameter values, and for each year of the time

horizon. All results here use the selected vector of feature weights as described in Section 4.1. The results

are displayed in Table D.7.

Across all selected parameter values and years, the highest estimated percentage reduction was 15.47%,
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Figure C.9: Distribution of estimated demand response potential for α = 0

Figure C.10: Distribution of estimated demand response potential for α = 1

Figure C.11: Distribution of estimated demand response potential for α = 2
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Figure C.12: Distribution of estimated demand response potential for α = 3

Figure C.13: Distribution of estimated demand response potential for α = 4

Figure C.14: Distribution of estimated demand response potential for α = 10
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Figure C.15: Distribution of estimated demand response potential for α = 14

Figure C.16: Distribution of estimated demand response potential for α = ∞
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while the lowest was 9.97%. The highest percentage reductions were estimated for α = 0, where the

estimated flexibility was simply an average of the observed building effects. The system-wide estimated

flexibility decreased with higher α parameter values. The lowest estimates were for α = ∞. In Figure C.16

observe that more buildings had estimated flexibility of greater than 15% than had estimated flexibility of

less than 15%. This implies that although less buildings had low estimated flexibility, this smaller number

of buildings accounted for a larger share of cooling demand. Also note that across all parameter values

the estimated peak day load reduction varied little in percentage terms across years. The 95% confidence

intervals were slightly less than ±2% across all estimates.

Alpha Year Peak Daily Load Peak Daily Load with DR (C.I.) Percent Reduction (C.I.)

0 2017 4.921 4.161 (4.066, 4.256) 15.43% (13.51%, 17.36%)

0 2018 3.938 3.330 (3.255, 3.406) 15.44% (13.52%, 17.36%)

0 2019 5.321 4.498 (4.396, 4.600) 15.46% (13.54%, 17.38%)

0 2020 5.588 4.724 (4.616, 4.831) 15.46% (13.54%, 17.38%)

0 2021 4.488 3.794 (3.708, 3.880) 15.47% (13.55%, 17.39%)

3 2017 4.921 4.260 (4.173, 4.346) 13.43% (11.67%, 15.19%)

3 2018 3.938 3.396 (3.326, 3.466) 13.77% (11.99%, 15.56%)

3 2019 5.321 4.595 (4.501, 4.690) 13.63% (11.85%, 15.41%)

3 2020 5.588 4.835 (4.736, 4.934) 13.47% (11.70%, 15.24%)

3 2021 4.488 3.881 (3.801, 3.960) 13.54% (11.77%, 15.32%)

14 2017 4.921 4.339 (4.248, 4.431) 11.81% (9.96%, 13.66%)

14 2018 3.938 3.460 (3.389, 3.532) 12.14% (10.31%, 13.96%)

14 2019 5.321 4.690 (4.594, 4.784) 11.86% (10.08%, 13.65%)

14 2020 5.588 4.939 (4.839, 5.039) 11.61% (9.82%, 13.40%)

14 2021 4.488 3.965 (3.885, 4.046) 11.65% (9.85%, 13.44%)

∞ 2017 4.921 4.378 (4.282, 4.474) 11.02% (9.07%, 12.97%)

∞ 2018 3.938 3.516 (3.442, 3.591) 10.72% (8.83%, 12.61%)

∞ 2019 5.321 4.772 (4.671, 4.873) 10.32% (8.42%, 12.21%)

∞ 2020 5.588 5.030 (4.923, 5.137) 9.98% (8.06%, 11.89%)

∞ 2021 4.488 4.041 (3.954, 4.127) 9.97% (8.05%, 11.90%)

Table D.7: Estimated peak daily demand (TJ) and percent reduction by year for selected values of α (C.I.: confidence interval).

To test the sensitivity of our results to the selected weight vector (λ), we compute the estimated system-

wide demand reduction for the peak demand day of 2020 using all candidate weight vectors. The results

are displayed in Table D.8. Here, all estimates use a parameter value of α = 3. Note that candidate weight
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vector 1 corresponds to our selected weight vector and our central result. The estimate is relatively stable

under different weight vector assumptions ranging from 13.30% to 14.03%.

Candidate Weight Percent Demand

Vector Index Reduction

Unweighted 13.90%

1 13.47%

2 13.98%

3 13.67%

4 13.30%

5 13.63%

6 13.42%

7 14.03%

8 13.70%

9 13.31%

10 13.59%

Table D.8: Estimated 2020 peak daily demand reduction (%) for all candidate weight vectors (λ) for α = 3.

Appendix E. Counterfactual demand variance calculation

In this section we describe the method by which we compute the asymptotic variance of system load

under the counterfactual demand response program. Where D is the counterfactual load on a certain day,

t (with t subscript omitted) as a function of the vector ψ̂ we have the following expression:

D(ψ̂) =
∑
i∈I

diexp(ψ̂i) (E.1)

where di is the BAU load on day t for building i ∈ I, where I is the set of all buildings in the system. Here,

ψ̂i is the weighted sum of the coefficients of the six in-sample buildings, i.e.:

ψ̂i =
∑
s∈S

πi,sβ̂s (E.2)

where β̂s is the estimate of the coefficient of building s ∈ S where S is the set of in-sample buildings. Then,

πi,s is the weighting of each coefficient β̂s in the estimation of ψ̂i. Under the assumption that the weighting

terms are non-stochastic and the estimated building coefficients, β̂s are independent, we have:

√
T (β̂s − βs) → N(0,AVar(β̂s)) (E.3)
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where AVar(β̂s)) is the asymptotic variance of estimator β̂s. Therefore, the asymptotic distribution of ψ̂i:

√
T (ψ̂i − ψi) → N(0,

∑
s∈S

π2
i,sAVar(β̂s)) (E.4)

where ψi is the linear combination of the true βs.

Let us define Ω as the variance-covariance matrix of the vector ψ̂. The ψ̂i are linear combinations of the

β̂s and thus for i ̸= j, we derive the asymptotic covariance of ψ̂i and ψ̂j as:

ωi,j =
∑
s∈S

πi,sπj,sAVar(β̂s) (E.5)

Then, using the delta method we can express the asymptotic distribution of D(ψ̂) as:

√
T (D(ψ̂)−D(ψ)) → N(0,∇D(ψ)TΩ∇D(ψ)) (E.6)

where each element of the gradient vector ∇D(ψ) is given by:

∇D(ψ)i = diexp(ψi) (E.7)

which is computed using ψ̂i as an estimate of ψi.
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