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Abstract 
 

District heating and cooling systems incorporating heat 
recovery and large-scale thermal storage dramatically 
reduce energy waste and greenhouse gas emissions. 
Electrifying district energy systems also has the effect of 
introducing city-scale controllable loads at the level of 
the electrical substation. Here we explore the 
opportunity for these systems to provide energy services 
to the grid through capacity-based demand response 
mechanisms. We present both a planning approach to 
estimate available demand-side capacity and a control 
framework to guide real-time scheduling when the 
program is active. These tools are used to assess the 
technical feasibility and the economic viability of 
participating in capacity-based demand response in the 
context of a real-world, megawatt-scale pilot during the 
summer of 2018 on the Stanford University campus. 
 
1. Introduction  
 
1.1 Motivation 
 

As century-old power grids evolve to accommodate 
increasing penetrations of renewables, an increasing 
body of literature suggests the need for a greater role for 
responsive loads in the hierarchical control mechanism 
for the grid [1], [2]. Determining which energy services 
can be provided by which demand-side assets and at 
what price will be key to unlocking their potential. 
Concurrently, recent advances in the design and “smart 
control” of district energy networks [3], [4] raise the 
question of the role that they and growing urban 
environments can play in the power grid, in the context 
of calls for deeper integrations of our energy systems 
across energy pathways and scales [5] . 

Here we present a case study of the potential for 
district-scale electric heating and cooling, combined 
with large-scale thermal energy storage, to provide grid 
services. As the main supplier of heating and cooling to 
over 150 buildings on campus, the California-based 
Stanford Energy System Innovations (SESI) project 
provides an ideal case study and testbed. In a major 

overhaul completed in 2015, the campus district energy 
system switched from a gas-fired co-generation-based 
system with steam distribution to the current electrified, 
integrated heating and cooling system with low-
temperature and  hot water distribution, adopting several 
of the latest innovations in district energy [3]. In the new 
design, shown in Figure 1, the bulk of thermal loads are 
met with waste-heat-driven electric heat pumps, 
complemented by conventional electric chillers in the 
summer and gas-fired boilers in the winter. The new 
design reduces costs, energy losses and carbon 
emissions and tightens the integration of the district 
network with the power system, as campus energy needs 
are now almost exclusively met by the power grid. 
Substantial additional grid, carbon and economic 
benefits can be obtained by optimizing the operations of 
this electrified district energy system [6], [7]. 
 

 
Figure 1. Energy system schematic. 

 
In this paper, we explore opportunities for even 

greater benefits from the coupling between the thermal 
and electric systems and the buffer offered by thermal 
storage (here, insulated steel tanks), by designing 
optimal operation strategies for district energy systems 
enrolled in a capacity-based demand response (DR) 
program like Pacific Gas & Electric’s Capacity Bidding 
Program (PG&E CBP). Such programs are designed to 
shift a portion of the risk associated with prediction 
errors on variable generation and demand from the 
utility to the consumer. In compensation for providing 
this service, the facility operator is rewarded with both 
a demand-response capacity payment and an energy 
payment. 

In the CBP, the enrolled customer bids a monthly 
load-shedding capacity. During the operating month, the 
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utility can then call a certain number of event days, 
during which the customer is expected to shed load for 
a pre-specified number of hours. Importantly, once the 
customer has made their capacity nomination, which is 
a power commitment, they are locked in for the month 
and can be called upon for arbitrary amounts of energy 
(within certain bounds). Accordingly, the bulk of the 
reward for customers comes from a capacity 
component, although there is an energy component as 
well. We seek to gain insights both on the questions of 
technical feasibility, i.e. what are the scale and 
characteristics of the service that can be provided by the 
campus, and economic viability, i.e. whether energy 
costs can be lowered by participating, given present-day 
pricing. The operation strategies we build are optimal 
from the point of view of customers enrolled in CBP, 
and therefore also allow us to assess their rational 
behavior and whether this achieves system benefits for 
the power grid. 
 
1.2 Context and key contributions 
 

District energy systems are changing from 
traditional waste-heat, steam-based networks to 
integrated heating-and-cooling multi-energy systems 
[3], [4], offering new opportunities for control and 
integrations with the power grid [7]–[10]. An example 
of recent interest in making district heating networks 
more responsive is in the North of China, where wind 
penetration is constrained by inflexible Combined Heat 
and Power plants that simultaneously produce heat and 
electricity in the winter [11]. Demand-side management 
strategies have been gaining traction since the 1980s. 
There has been a particular focus on Thermostatically 
Controlled Loads (TCLs, such as refrigerators and air 
conditioners), with the development of methods to 
coordinate large collections of devices [12], [13], 
including randomization techniques to avoid 
synchronization (e.g. [2]). Other small loads such as 
pool pumps or electric vehicles have been shown to have 
potential [14], [15], but also larger ones such as data 
centers [16] and industrial facilities [17]. In the context 
of urban environments, there have been evaluations of 
the potential for DR at the building level [18], including 
experimental demonstrations of second-scale response 
times [19]. Most of these examples focus on the 
provision of energy services at short time scales of days 
to seconds however, in contrast to the PG&E CBP, 
where power commitments are made on a monthly 
basis. Capacity-based mechanisms have received some, 
but much less modeling attention [20], [21], even 
though they represent the bulk of revenue for current DR 
programs (e.g. see Figure 1 of [22] for data on the PJM 
Interconnection). The PG&E CBP was studied at the 
Google MtV campus [23], but the ability to control 

energy assets was limited, included only a fraction of the 
buildings, and the response was performed at a building 
rather than district level. Accordingly, efforts focused 
on the variability in the response of the loads to DR 
signals, and on a statistical characterization of drops in 
demand to inform risk-aware capacity nominations. In 
contrast, the work presented here introduces a general 
framework to study participation strategies in capacity-
based DR programs that can be applied to controllable 
loads, as long as their operations scheduling can be 
modeled as in equation (2). Key contributions presented 
in this paper include: 

(a) A simple deterministic model for the rational 
behavior of customers enrolled in the CBP, 

(b) A two-stage stochastic optimization approach 
to planning capacity nominations, 

(c) An approach based on Receding Horizon 
Control (RHC) to scheduling energy 
operations when the program is active, 

(d) Results and insights from the application of 
this framework to a real-world pilot at the 
district level and on a megawatt-scale. 
 

1.3. Preliminary: operations scheduling for 
district energy systems 
 

Previous work by the same authors [7] introduced a 
framework for the operations scheduling of district 
energy systems and applied it to the SESI project. Such 
systems provide different energy streams to their 
consumers, e.g. cooling, heating, and electric power. 
Heating and cooling is generated using electricity and 
gas at a central on-site location, that we will generically 
refer to as the central energy facility (CEF), before being 
distributed through a network of pipes. The aggregate 
electric and gas load can be divided in (i) a fraction that 
is managed by a central controller, e.g. from the CEF or 
from electric vehicle charging, and (ii) a fraction that is 
not dispatchable and depends on the end-users. 
We call the operations scheduling problem that of 
choosing the schedule for the controllable energy draws 
such as to minimize operating costs for the aggregate 
system. Typically, an hourly volumetric price is paid for 
electricity and gas, and a monthly flow rate price, also 
called a demand charge, is paid for the maximum 
monthly electricity consumption (peak demand). In the 
case of the SESI project, the controllable energy draws 
are determined by the production schedule of each of the 
machines at the central energy facility. With 𝑒", 𝑔" the 
hourly aggregate electricity and gas consumption, and 
𝜋&," , 𝜋'," the corresponding hourly electricity and gas 
prices, 𝑧)  monthly auxiliary variables to represent 
monthly electricity peak demand and 𝜋*,) the monthly 



 

 

demand charge, it is shown in [7] that the operations 
scheduling problem can be written as: 
argmin1 𝜋&,"𝑒" + 𝜋',"𝑔"

"∈𝒯
+1 𝜋*,)𝑧)

)∈ℳ
, (1)	

subject to various technology constraints for the 
different machines, and storage dynamics for the heat 
storages. Here ℳ represents the set of months and 𝒯 the 
set of hours in the year. Equation (1) represents the 
campus annual energy bill. The program we solve in [7] 
also includes quadratic penalties for auxiliary variables 
that represent unmet loads, these were omitted here for 
simplicity. The operations scheduling problem can be 
written more concisely by recognizing that it is a 
Quadratic Program (QP), of the form: 

argmin𝑓(𝑥) = 𝑐>𝑥 + 𝑥>𝑄𝑥, (2)
subject	to: 𝐴𝑥 = 𝑏,

𝑥 ≥ 0.
 

In this more general formulation, the decision vector 𝑥 
encodes hourly operations schedules and the monthly 
peak demands, the vector 𝑐 and matrix 𝑄 are used to 
encode the operating costs, matrix 𝐴 is called the 
technology matrix and vector 𝑏 includes the energy 
loads that must be met (as well as terms to represent 
operational constraints for the machines). As a 
reference, the problem of scheduling hourly energy 
operations for a year for the SESI project can be 
represented as a QP with 150k decision variables and 
250k constraints and is solvable in seconds on a laptop. 
In the remainder of this paper, we will assume that the 
operations of the energy system we are modeling are 
captured by equation (2). Our goal will be to devise 
planning and control strategies to participate in CBP, 
given that energy operations can be modeled by 
equation (2). 
 
2. Modeling capacity-based demand 
response  
 

We now describe the PG&E Capacity Bidding 
Program (CBP) [24] and build a simple deterministic 
model for customer participation. As of 2018, PG&E is 
entering commitments from the CBP as Proxy Demand 
Resource (PDR) assets in the California Independent 
System Operator (CAISO) markets. The PDR 
mechanism provides a way for demand response to 
participate in energy markets that were traditionally 
reserved for supply-side assets. We model the 
Prescribed option of the CBP referenced in [24] where 
PG&E chooses the price at which CBP commitments 
are entered the market (likely to be between $70-85 
MWh-1). Two new options were introduced in 2018 
(Elect and Elect +) to give customers more flexibility 
but are not considered here. 

The program season is May through September. 
Twenty-five days before the start of each month, 

participants in the program, also called aggregators, 
must submit a capacity bid (in MW) to PG&E. At any 
time during the month, aggregators can then be called 
upon by PG&E to deliver their capacity in the form of 
load shedding, within certain limits each month: (i) 
program hours are eleven a.m. to seven p.m., (ii) events 
last one to four hours, and (iii) there are caps at thirty 
hours, five days or three consecutive days, whichever is 
most constraining. Events can be expected to be 
triggered (i) when either the CAISO Locational 
Marginal Price (LMP), or the load that PG&E is 
expected to serve the following day, or forecasted 
temperatures, reach certain thresholds, (ii) when the 
CAISO dispatches PG&E for a PDR that is part of the 
CBP, and (iii) at PG&E’s discretion. Notifications are 
made at four p.m. on the day before an event. Payments 
under the CBP are divided into two portions: a capacity 
payment and an energy payment. The energy payment 
is passed on directly from CAISO’s PDR mechanism 
and corresponds to the difference between a day-ahead 
and a real-time price. Monthly, energy payments are 
expected to represent less than 10% of capacity 
payments and will depend on LMPs that are difficult to 
predict one month ahead. For the remainder of the paper, 
they will not be considered. The capacity payment can 
be calculated from the capacity price 𝜋OOPQ ($⋅kW-1), the 
capacity bid 𝑦 (kW, both known before the fact), and the 
aggregator performance (% adjustment, measured after 
the fact). We call nominal capacity payment 𝑝OOPQ =
𝑦𝜋OOPQ , the maximum reward that the aggregator 
achieves by delivering exactly as was planned by their 
bid, also called a nomination, at the beginning of the 
month. Illustrative numerical values are given in Table 
1. If the campus were to participate at the 10 MW level, 
this would represent monthly savings of 1-12% for the 
six months that the program is active (3% annually). 

As in many DR programs, measuring hourly 
performance is key. We call ℋ the set of event hours. 
PG&E defines the delivered capacity 𝑦VW at event hour ℎ 
as the observed drop in electric load 𝑒W from the baseline 
𝑒WY. In the CBP, the baseline for a given hour 
corresponds to the average of the ten previous days at 
the same hour of the day (excluding weekends, holidays, 
and event days). The baseline can also be adjusted on 
the day of an event (by +/-40%), but we omit that to be 
conservative in our estimates here. The monthly 
capacity payment 𝑔(𝑦, 𝑦V) is computed from the hourly 
payment ratios 𝑢(𝑦VW/𝑦), which are a function of the 
hourly ratios of delivered capacity to nominated 
capacity 𝑦VW/𝑦: 

	
𝑔(𝑦, 𝑦V) =1 𝜋OOPQ

W∈ℋ

𝑦
|ℋ|𝑢

]
𝑦VW
𝑦
^ , (3)

= 𝑝OOPQ
1
|ℋ|

1 𝑢 ]
𝑦VW
𝑦
^

W∈ℋ
. (4)

 



 

 

Table 1. Value of nominal capacity payments 
from bidding in the PG&E CBP [24]. 

 Jul Aug Sep May-Sep 
1 kW $16.3 $22.6 $13.9 $62.1 
5 MW $82k $113k $69.5k $311k 
10 MW $163k $226k $139k $621k 

 
Figure 2. Risk-averse capacity rewards as a 

function of hourly delivered capacity.  
 

Shown in Figure 2, the function 𝑢(𝑦VW/𝑦) is 
piecewise linear, takes values between -60% and 
+105%, and is negative if delivered capacity drops 
below 60% of the capacity nomination. It is designed to 
make the enrolled customers risk-averse (but is not 
concave), so that they reliably deliver the capacity they 
promised during each event. Although performance is 
measured on an hourly basis, aggregator gains do not 
increase proportionally with the number of events (and 
therefore energy delivered). The maximum aggregator 
gain only depends on the capacity bid that was made at 
the beginning of the month. Consequently, the CBP 
rewards a service measured in units of power (or 
capacity) rather than energy. 

As a back-of-the-envelope evaluation of the risk 
from participating in the CBP, we calculate a condition 
for a null payment for capacity, assuming the aggregator 
responds either fully to an event or not at all. Calling 𝑘 
the number of the event hours for which performance is 
perfect, we can write the null capacity payment in this 
case as: 

0 =
𝑘
|ℋ| 𝑝O

OPQ − 0.6
|ℋ| − 𝑘
|ℋ| 𝑝OOPQ (5) 

According to equation (5), aggregators can fail for up to 
63.5% of the event hours without losing money by 
participating in the program. The payment ratios in 
equation (4) introduce non-linearities in the objective 
function. Standard methods exist to deal with piecewise-
linear functions, fractions and products of decision 
variables [25] but for simplicity, here we instead choose 
to penalize deviations, and redefine 𝑔 as: 

𝑔e(𝑦, 𝑦V) ≔ 𝑦𝜋OOPQ − 𝜆1 (𝑦VW − 𝑦)h,
W∈ℋ

(6) 

where 𝜆 is a tunable parameter and the choice of the 2-
norm over the 1-norm is motivated by our risk-averse 
setting: using a 2-norm will produce solutions where 

penalties are “spread” over multiple hours, whereas a 1-
norm penalty will direct the program towards sparse 
solution vectors. 

To summarize, the deterministic participation of a 
customer whose energy operations are well captured by 
equation (2) and is enrolled in the CBP can be modeled 
by the following program: 

min𝑓(𝑥) − 𝑔e(𝑦, 𝑦V), (7)
subject	to: 𝐴𝑥 = 𝑏,

𝑣(𝑥, 𝑦V) = 0,
𝑥, 𝑦 ≥ 0.

 

Here the function 𝑣 is used to write the defining 
constraint for the auxiliary variables 𝑦VW that represent 
the delivered capacities at each hour ℎ: 

𝑣(𝑥, 𝑦V)W = 𝑦VW − (𝑒k(W)Y − 𝑒k(W)). (8)	
This can be more concisely written in matrix form: 

𝑣(𝑥, 𝑦V) = 𝑦V − 𝐷𝑥. (9)
In equations (8) and (9), 𝑑 and 𝐷 both represent the 
mapping from a given hour ℎ in the set of event hours	ℋ 
to the corresponding hour	𝑡 in the set of hours in the 
month 𝒯. Using our simplified form in equation (6) for 
the capacity payment results in a (convex) quadratic 
objective in problem (7), so that this now defines a QP. 
Consequently, our simplified deterministic model for 
CBP is not much more difficult than the one in equation 
(2). The delivered capacity 𝑦VW is defined as the 
difference between a baseline and actual load, so 
inflating the baseline by raising consumption on non-
event days can be just as economically efficient as 
reducing load to meet a requested drop. This is not the 
intended behavior however, and plant operators will be 
reluctant to allow their demand charges to increase due 
to higher peak loads, so we include additional 
constraints on the monthly peak variables 𝑧), 𝑗 ∈
ℳ:	𝑧) ≤ �̅�), where the �̅�)  are manually set (for instance 
from a previously computed solution to problem (2)). 
These constraints concern operations scheduling, and 
they will be encoded in matrix 𝐴 and vector 𝑏 in the 
remainder of this paper. 

Figure 3 shows the thermal dispatch schedules and 
corresponding power draws that result from solving the 
deterministic versions of the operations scheduling 
problem (2) and the CBP operations scheduling problem 
(7) for a few days in May of 2016. In the thermal 
dispatch schedules, the top portion of the plot shows the 
cooling loads, the cooling output of the chillers and heat 
recovery chillers (HRCs), and the state of charge of the 
chilled storage. The bottom portion shows the heating 
output of the HRCs and gas heaters, as well as the state 
of charge of the hot storage. In the spring and summer, 
the extent to which the HRCs can be used to produce 
chilled water is constrained by the daily hot water 
consumption. 



 

 

 
Figure 3. Top/middle: thermal schedule 

without/with CBP. Bottom: Corresponding 
power draws without/with CBP. 

 
The thermal storage tanks are used as buffers and 
provide the main source of flexibility of the system, as 
described in [7]. The third plot in Figure 3 shows the 
corresponding power draws. The electricity flowing to 
the chillers and heat recovery chillers constitutes the 
bulk of the controllable Central Energy Facility (CEF; 
green) electric load. This is added to the non-
dispatchable campus loads (black) to constitute the total 
electric load that Stanford is billed for (in blue). In this 
example, events are called on May 17th and 18th (shown 
in light gray), and the CEF provides 5 MW of capacity 
to PG&E. The CEF deviates from the optimal schedule 
for problem (2) to participate in the DR program, which 
causes an increase in peak load. 
 
3. Planning approach  
 
3.1. Problem formulation 
 

The “planning problem” consists of choosing the 
capacity nominations twenty-five days before the start 

of each month. Our approach to the planning problem 
relies on solving a two-stage stochastic optimization 
program over the entire program season, where capacity 
nominations are decided at the first stage, and hourly 
operations are scheduled at the second one. We write 
our problem as: 

argmint𝑞(𝑦) ≔ 𝜋OOPQ
>𝑦 + 𝔼𝑄(𝑦, 𝜉)x , 	 (10)	
 

where 𝑦 and 𝜋OOPQ are now vectors with the monthly 
capacity nominations and prices, respectively, and 
Q(y, ξ) is the solution to the following second-stage 
problem: 

Q(y, ξ) = min𝑓(𝑥) + 𝑔e(𝑦, 𝑦V) (11)
subject	to: 𝐴𝑥 = 𝑏,

𝑦V = 𝐷𝑥,
𝑥 ≥ 0.

	

Here 𝜉 = (𝐷, 𝑏, 𝑐), where 𝑐 represents the cost vector in 
problem (2), encodes the second-stage uncertainty: we 
assume that there is uncertainty in the energy loads and 
prices, as well as in when events are called. One 
realization of 𝜉 corresponds to a given trajectory for 
loads, prices, and event times for the entire year. The 
program defined by equation (11) is slightly more 
restrictive than what is imposed by the CBP because it 
assumes that all nominations must be chosen at the 
beginning of the year and does not account for the fact 
that they can be changed every month. It does account 
for the coupling of the months through the baseline 
calculation however. Since the baseline can extend up 
to twenty days in the past, this coupling is quite strong 
and treating the months independently would be much 
less realistic. 

If the support of the uncertainty is discrete, the 
planning problem can be represented by its certainty-
equivalent counterpart, a deterministic optimization 
program that has the form: 

min1 𝑝|(𝑓(𝑥|) + 𝑔e(𝑦, 𝑦V|))
|

, (12)

subject	to: 𝐴𝑥| = 𝑏|, 𝑘 = 1⋯𝐾,
𝑦V| = 𝐷|𝑥|, 𝑘 = 1⋯𝐾,
𝑥|,𝑦 ≥ 0, 𝑘 = 1⋯𝐾.

 

In equation (12), there are 𝐾 scenarios that each have 
weight 𝑝|. 
 
3.2. Planning problem results 
 

The planning problem formulation that was just 
described was used with real load data from 2016 and 
2017 to inform the choice of capacity nominations for 
the CBP 2018 season at Stanford University. An extract 
of the input data is shown in Figure 4. It is likely that 
events will be called on days where temperatures are 
high, and the campus is itself under stress. To obtain a 
conservative estimate for available capacity, we assume 
that CBP events are called on the five days where 



 

 

aggregate campus cooling load is highest each month. 
Since CBP events are only called on weekdays, we shift 
the timestamps of the 2017 data by 364 days instead of 
a full year and use the 2016 calendar. This ensures that 
weekday/weekend profiles for the two datasets 
correspond (as seen on the electricity plot in Figure 4), 
and that events can only be called on the (harder) days 
with weekday consumption profiles. There were several 
differences between the two years as evidenced by the 
data shown in Table 2, most notably: (i) the summer of 
2016 was much milder than that of 2017, (ii) the summer 
of 2017 experienced two heat waves, where cooling 
loads rose to unprecedented levels, (iii) from the 
summer of 2016 to that of 2017 the on-site solar 
generation capacity on the Stanford campus was 
increased from 400 kW to 4.5 MW, the effect of which 
can be seen on the top plot for electricity usage in Figure 
4. 

We first compute the optimal CBP participation 
strategy by solving the program in equation (12), 
assuming that the two datasets should be given equal 
weight. Table 3 shows the expected value changes in 
different components of the campus energy bill from 
participating in the CBP, as well as the monthly capacity 
bids and the increase in peak load for July and August. 
The monthly energy bill is comprised of three main 
components: an energy charge (weighted integral of 
hourly electrical consumption timeseries), a demand 
charge (maximum of hourly electrical consumption 
timeseries), and a capacity payment if participating in 
CBP (a negative cost). July and August are the two most 
profitable months in the CBP [24]. 

 
Table 2. Difference in daily consumption 

percentiles from 2016 to 2017. 
 P50 P75 P90 P95 
Cooling +9% +13% +23% +33% 
Heating -6% -2% +8% +12% 
Electricity -4% -5% -5% -5% 

 

 
Figure 4. Campus aggregate energy load data 

for twenty days in June. 
 

Table 3 shows that the largest impact from participating 
in the CBP is to increase peak monthly loads (capped at 
15% of the pre-CBP peaks here), thus raising demand 
charges, but that this increase is more than offset by the 
CBP capacity payments. The increase in peak load also 
gives the program more freedom to shift consumption to 
lower price periods, which accounts for the slight 
reduction in energy costs. 
In Figure 5, we vary the weights of the different 
scenarios in formulation (12). We show the monthly 
capacity nominations as well as the expected value of 
the cost reduction from participating in the CBP as a 
function of the relative weight 𝛼 between 2016 and 
2017. Low values for 𝛼 mean that experiencing a year 
like 2016 is more probable. We observe that 
participating in CBP is more challenging for the months 
of September and May in 2017 than 2016, and that the 
opposite is true for June. It is interesting and maybe 
counterintuitive to note that the June 2017 heatwave 
(June 18-19 in Figure 4) does not present a significant 
challenge either for demand charge mitigation or 
participation in the CBP, because the high cooling loads 
occurred on a weekend, when the campus electric load 
is lower. By contrast, the relatively lower cooling loads 
on June 3rd 2016, a Friday, are much more difficult to 
manage. The relative difficulty of meeting cooling loads 
during those two events is confirmed numerically from 
the Lagrange multiplier (shadow price) associated with 
the constraint on chilled storage capacity in both cases, 
which quantifies the objective function decrease from 
adding one unit of capacity at that hour. This example 
also illustrates the coupling between the different energy 
streams consumed on campus and motivates an 
integrated approach to managing them. 
 
Table 3. Expected value of bill changes for the 

here-and-now solution to the planning 
problem (12) using 2016 and 2017 data. 

 Jul Aug Total (May-Oct) 
Energy (k$) -0.9 10.6 -0.1 
Peak (MW) 4.8 4.0 NA 
Demand (k$) 35.1 28.9 129.7 
CBP bid (MW) 7.6 7.1 NA 
CBP (k$) -123 -159 -374 
Bill (k$) -90 -120 -245 

 
4. Control approach 
 
4.1. Algorithm 
 
In this section, we describe the general architecture of 
the control framework that was implemented for the 
2018 CBP season at Stanford.  



 

 

 
Figure 5. Monthly capacity nominations and 

expected bill reduction for the CBP season as 
a function of the weight 𝜶 between 2016 and 

2017 data. 
 

The control framework is used to make real-time 
control recommendations to the CEF operators. 
Informally described in Algorithm 1, the framework is 
based on Receding Horizon Control (RHC) [26] (also 
known as Model Predictive Control). At each time step 
𝑡, we solve a deterministic CBP operations scheduling 
problem based on problem (7) that uses available 
historical data and an 𝐻-step ahead forecast. In our 
formulation, the state includes the energy in the thermal 
storage tanks, the peak electrical load to date and the 
information available for forecasts. The control 
corresponds to the electrical energy drawn by each CEF 
machine for the next 𝐻 time steps. 

In problem (13), the uncertain parameters are the 
campus energy draws for heating, cooling, and 
electricity, encoded in vector 𝑏�", and the dates of CBP 
events, encoded in matrix 𝐷�". In particular, the cost for 
operations  𝑓"	and for participating in the CBP 𝑔", as 
well as the technology matrix 𝐴, are assumed fully 
known. The uncertainty on the efficiency of the 
machines will result in flows to the energy storage tanks 
that are different from expected, but this will be 
absorbed by the uncertain parameter 𝑏�". In contrast with 
problem (7), the capacity nomination is not a decision 
variable but now set at value 𝑦� (e.g. chosen when 
solving the planning problem (12)). 

Real-time energy load data is input to the controller 
from the campus data historian and used to update the 
system state at every hour. The forecast has two 
components: energy draws and CBP event times. To 
forecast energy draws during the summer 2018 pilot, we 
use proprietary Johnson Controls software purchased by 
the university [27]. In the context of this paper however, 
the performance of Algorithm 1 is evaluated using the 
error model described in section 4.2. To deal with the 
uncertainty in CBP event dates and times, we use a 
simple strategy: (i) as soon as we are notified of an event 
by PG&E (4 p.m. on the day before), that event is 
included in the forecast; (ii) the forecast always includes 
an event day at the end of the forecast horizon. The goal 

of this strategy is to ensure that the CEF will always be 
in one of two operating modes: if an event was called 
for the following day, then the CEF is preparing for the 
event, e.g. by making sure that the energy storage tanks 
are fully charged before the start of the event. If no event 
was called for the following day, then the CEF is 
preparing for an event at the end of its forecast horizon, 
e.g. by making sure its baseline is high (without raising 
peak load) so as to make responding to future events 
easier. 

As discussed in section 4.3, the control algorithm is 
more sensitive to uncertainty in electric loads than in 
heating and cooling loads. One reason for this is the bill 
structure, and in particular the demand charge that is 
paid for the maximum monthly electrical load. Optimal 
solutions to problems (2) or (7) typically display a 
consumption pattern where aggregate electrical load is 
exactly at its monthly peak for the majority of the time 
steps, so that the corresponding load profile is kept as 
flat as possible (see e.g. the bottom plot in Figure 3 for 
an example of this behavior). Consequently, a direct 
implementation of Algorithm 1 generates control 
trajectories where the peak electrical load increases 
steadily over the course of the month, as shown in 
Figure 7. As the controller progresses in time, it tries to 
keep aggregate load as close as possible to the peak. If 
the non-dispatchable electrical load was higher than 
forecasted, then the value of the historical peak rises, 
and is subsequently used as the new target by the 
controller at the next time step. To correct this 
undesirable behavior, Algorithm 1 is modified so that a 
constant buffer term is now added to the electrical load 
forecast. Numerically, a buffer of +3𝜎& kW was found 
to produce satisfactory results, where 𝜎& is an estimate 
for the standard deviation of the 1-hour ahead prediction 
error (assumed to be available from historical data). 

 
 

Algorithm 1: RHC for CBP-aware CEF operations 
Initialize state of charge of the storage tanks, choose 
capacity nomination 𝑦� for the month; 
At time step 𝑡 = 1⋯𝑇: 

1. Make forecasts for parameters 𝑏�" and 𝐷�", 
2. Solve problem (12) at time t: 

min𝑓"(𝑥) + 𝑔"(𝑦, 𝑦V), (13)
subject	to: 𝐴𝑥 = 𝑏�",

𝑦V = 𝐷�"𝑥,
𝑦 = 𝑦�,
𝑥 ≥ 0,

 

to obtain the control inputs to the CEF 
machines for time step 𝑡, 

3. Update state: observe real loads, update state of 
charge of the thermal storage tanks and 
historical peak electricity load for time step 𝑡. 

 

 



 

 

4.2. Controller performance evaluation method 
 

In order to evaluate the performance of our control 
algorithm, we use an approach similar to that in [28], 
where prediction errors are modeled using a martingale 
forecasting process to represent an unbiased prediction 
process that improves over time. We will use this error 
model to generate noisy forecasts from 2016 actuals for 
each of the energy streams that are consumed by the 
campus. Specifically, for a given quantity	𝑞, the 
prediction error at time 𝑡 for time 𝜏, 𝑞"(𝜏) − 𝑞(𝜏) is 
modeled as a sum of normal random variables: 

𝑞"(𝜏) = 𝑞(𝜏) +1 𝑛��
𝜎h

𝜏 − 𝑠 + 1

�

��"
. (14) 

Here the random variables 𝑛�(𝜏) ∼ 𝒩(0,1) are 
independent and identically distributed. When 
evaluating our control algorithm, we will generate 
forecasts up to 𝐻 steps ahead {𝑞�(𝜏), 𝜏 = 1⋯𝐻}. The 
root-mean-square error (RMSE) 𝜏 steps ahead for this 
process is:  

𝑅𝑀𝑆𝐸(𝜎, 𝜏) = 𝜎�𝔼 ]1
𝑛�

√𝜏 − 𝑠 + 1

�

���
^
h

(15) 

We plot this quantity for 𝜎 = 1 as a function of 𝜏 in 
Figure 6 (evaluated numerically using 100k samples). 
The parameter 𝜎 will be used to control the level of 
uncertainty. The 1-hour and 7-day ahead RMSEs are 
approximately 𝜎 and 2.4	𝜎. We will use the notation 𝜎W, 
𝜎�, and 𝜎& for the uncertainty-controlling parameters for 
heating, cooling and electricity, respectively, and 
express them as a percentage of a maximum value for 
the each of the loads (25 mmbtu/hr, 1.6k tons and 850 
kW). 
 
4.3. Controller performance results 
 

Figure 7 shows a comparison of the trajectory of a 
controller using Algorithm 1 with and without a buffer 
for the electrical load forecast to the optimal trajectory 
obtained with perfect information over the entire 
horizon for problem (2). This plot illustrates how a 
direct implementation of Algorithm 1 is derailed by 
uncertainty in the electrical load forecast. Adding a 
buffer makes the controller more conservative and 
avoids the steady increase in peak load. In Figure 8, we 
show the behavior of the controller in the CBP problem 
(7) under a 5 MW nomination, as well as the plan made 
by the controller at 3 p.m. on July 12th, just before it is 
notified of the July 13th event. Under Algorithm 1’s 
policy, the baseline is slightly lower (500 kW) during 
events than in the perfect information case, so more load 
must be dropped to meet the nomination. 

In Figure 9, we assess the performance of 
Algorithm 1 as a function of 𝜎� (CW) and 𝜎& (KWH) in 
the context of the CBP problem (7). Suboptimality 
manifests itself primarily through unmet cooling loads, 
so we use this as our performance criterion. The two 
other main components of the objective function (hourly 
energy cost and demand charge) do not vary 
significantly with increased levels of uncertainty (a 
constraint was imposed on peak load in problem (7)). In 
Figure 9, the x-axis is scaled with the maximum error 
we use in each case (1.6k tons and 850 kW). The y-axis 
is scaled by the mean hourly cooling load (9.3k tons), so 
that we report hours of lost cooling. We show the first, 
second and third quartiles for algorithm performance 
over 200 trials. The distributions are much tighter for 
prediction errors in electric load than in cooling load. 
This can be explained by (i) the much stronger 
variability in cooling loads than in electric load (see e.g. 
Figure 4), which means that although there are only a 
few days per month where greater than expected cooling 
loads are a problem, uncertainty on electrical load 
impacts the system similarly every day; and (ii) the 
demand charge, under which the system operates close 
to its peak load for prolonged periods of time. Hot water 
loads are lower in the summer, so corresponding 
prediction errors do not affect the quality of the solution 
and are not shown here. 

 

 
Figure 6. Normalized RMSE as a function of 

time for the prediction error model (14). 
 
 

 
Figure 7. Problem (2): RHC with/without buffer 

term (buf.) vs. perfect information (pi). 
 
5. Discussion 
 

Although we present its application to a specific 
case study, the framework introduced in this paper is 
quite general. The PG&E CBP is structured closely to 
the standard Demand Response Auction Mechanism 
(DRAM) contracts that were introduced by the 
California Independent System Operator to integrate 



 

 

DR in their energy markets. Even though DRAM 
contracts typically do not include a capacity payment, 
they usually require the same type of monthly power 
commitments as the CBP. The problem formulation (2) 
is used here to describe a district energy system, but it 
can be generically applied to a range of energy assets, 
including electric vehicle charging stations, controllable 
industrial loads or electrochemical energy storage. 

The goal of capacity-based DR is to provide value 
to the power system by identifying a certain number of 
controllable loads that can be called upon to reduce 
consumption when the grid is under stress. These stress 
periods will also tend to be the ones where the 
controllable loads are under stress themselves (the CBP 
typically targets the five hottest days of the month, for 
instance). By modeling the rational behavior of demand-
side assets entered in such a program, we are in a 
position to assess whether such mechanisms can 
actually provide value, both to the utility and to the 
customer. Measuring performance during DR events 
will be key moving forward. Alternatives have been 
proposed to the current method for calculating baselines 
[36], under which today’s customers are incentivized to 
increase baselines such as to make responding to events 
easier. To a first order, increased baselines will make 
financial sense when the demand charge is lower than 
the capacity price (true for half of the CBP season at 
Stanford). 

 

 
Figure 8. Problem (7): RHC vs. perfect 

information (pi) trajectories and controller 
plan just before the July 13th event is 

announced. 

 
Figure 9. Control algorithm performance as a 
function of prediction error for problem (7). 

 
Under the current rate structure, an 8 MW 

participation in the CBP reduces heating-and-cooling-
related electricity costs by 28% in August and July (9% 

annually). These costs represent only 25% of the 
aggregate campus electric bill however. Against the 
total bill, annual savings are 2%, which does not provide 
a strong business case for engaging in this type of DR. 
More precise assessments of DR's value to the grid (e.g. 
from distribution upgrade deferrals) could make that 
case stronger. 

A natural extension of our current RHC-based 
control framework would be to solve a stochastic 
program at each time iteration. This would probably 
generate more conservative controls and remove the 
need for a buffer on electrical load. Other approaches 
than those presented in this paper also exist, in particular 
within the stochastic and dynamic programming 
communities [29]. In any case, participating in the CBP 
is complex and requires computational tools to predict 
available capacity before the start of the month and 
control energy operations. This is especially true in a 
district network where multiple energy streams are 
coupled. Many demand-side assets do not have such 
sophisticated controls available, yet they could probably 
provide significant value to the grid. 

The Stanford CBP pilot highlights the inherent 
flexibility available in district energy systems with large 
thermal storage. The question of how to value this 
flexibility and how best to use it remains open. While 
current DR mechanisms are overwhelmingly based on 
load shedding, shifting to a demand dispatch paradigm 
could be a way of incentivizing the ability to increase 
load as well. The capacity bidding and control 
framework presented here could also be used for the 
more general problem of demand response. 
 
6. Conclusion 
 

This paper has focused on developing modeling 
tools to enable the real-life participation of electrified 
district energy systems in capacity-based demand 
response programs. The framework was applied and 
tested in the context of a pilot that is active during the 
summer of 2018 on the Stanford University campus to 
participate in PG&E’s Capacity Bidding Program. The 
formulation that was derived can be used for arbitrary 
energy assets, as long as their operations scheduling 
problem can be described by equation (2). According to 
results from our planning approach, up to 8 MW of 
capacity could be provided by the 15 MW Central 
Energy Facility while maintaining the increase in 
monthly peak campus electrical loads below 15%. For 
the most lucrative months (July and August), net 
rewards from the program are expected to represent 5-
7% of the monthly campus energy budget (or 28% of 
heating and cooling electricity costs). The RHC-based 
control approach we develop is most sensitive to 
uncertainty in the electrical loads, which are also the 



 

 

easiest ones to forecast. This work provides a 
foundational framework for assessing the value of 
capacity-based DR for the power system and should 
inform future DR mechanism design. 
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