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Abstract

Buildings represent over half of global electricity demand. Cooling buildings already accounts for over 9% of global electricity de-

mand and is expected to grow rapidly due to climate-change induced hot-spells and increasing prosperity in developing economies.

In the US, commercial buildings represent 35% of nationwide electricity consumption. Increased electricity demand for cooling

services will challenge already stressed power grids, particularly during times of peak demand. This work explores the flexibility

and demand response potential of large Heating, Ventilation and Air Conditioning (HVAC) systems based on an extensive set of

measurements from six commercial buildings in a Warm-summer Mediterranean climate. Over a three-month summer period,

zone-level temperature set points were adjusted daily in six commercial buildings to determine the effect on chilled water and

electricity loads, as well as on zone-level temperatures. External weather conditions were measured continuously during the test-

ing period. The experimental data that were collected are published with this article. These experiments confirmed the potential

to provide flexibility by reducing energy demands based on modest zone-level temperature set point adjustments. A two-degree

Fahrenheit increase of the cooling set point resulted in a 13-28% reduction in daily building-level cooling loads on average for

four office buildings and 3-4% for two laboratory buildings. The impact on electric loads was less than 2% (excluding for cooling

water but including for ventilation). Zone-level temperature increases were measurable but temperatures remained within the target

ranges. By collecting 385 experiment-days of experiment data, we were able to parameterize statistical models for the response

of the buildings. These models provide statistical guarantees on the reliability of thermal demand response. This work provides a

blueprint for constructing building and zone-level energy-response functions and highlights the value of testing buildings repeatedly

and across a range of weather conditions. Providing statistical performance guarantees will be critical for widespread adoption of

demand response technology to provide the flexibility needed to meet peak electricity demands. Combined with thermal storage,

the daily flexibility studied here would also unlock daily and sub-daily electrical flexibility, and can also be integrated with sub-daily

flexibility from building-level electrical loads.

Keywords: Commercial building flexibility experiments, Data-driven building energy models, Thermal Demand Response,

Temperature set point experiments, Commercial HVAC flexibility potential, Grid-Interactive Efficient Buildings

1. Introduction

Energy for buildings represented 30% of global energy end-

use in 2018 and 28% of the corresponding emissions (excluding

construction) [1]. Despite efficiency gains in the past decade,

global building energy use continues to grow, driven by popu-

lation, heat waves, a growing middle-class, and floor area ex-

pansion. This is especially true for space cooling, that already

represented 9% of world electricity use in 2018 [2, 3]. This

work focuses on the flexibility potential of the US commercial

sector, that represented 35% of 2020 US electricity sales [4].
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Active management of energy consumption in buildings can

reduce the costs and the carbon impact of our energy systems

and improve their resiliency and their efficiency. In commer-

cial buildings, e.g. offices, retail sites, supermarkets, schools,

laboratories, or data centers, Heating, Ventilation and Air Con-

ditioning (HVAC) systems have been a prime target for energy

flexibility for over a decade [5]. Accurate measurement tools

are now needed to unlock mass deployment of Demand Re-

sponse (DR) technologies. Beyond engineering calculations

and simulations, energy system operators require measurement-

based models for the response of building energy systems to

integrate them into their decision-making.

This paper presents and demonstrates practical and scalable

experimental methods to construct quantitative, data-driven flex-

ibility models for the energy behavior of commercial buildings

in response to daily temperature set point adjustments, while

controlling for weather conditions and occupancy. The flexibil-

ity model we propose is simple to interpret, calibrate, and up-

date through repeated testing. It provides statistical information

that is directly relevant to electric grid or district energy sys-

tem operators calling on DR. More regular testing of buildings

will also lead to energy performance benefits by stress testing

the response of a building’s overall energy system to controlled

perturbations.

The paper reports on three important empirical findings from

analyzing data generated during 385 experiment-days during

the cooling season in six large office and laboratory buildings

located on a university campus in Northern California (Warm-

summer Mediterranean climate). First, buildings don’t all re-

spond identically to temperature set point changes nor to out-

side weather conditions, which further motivates the need for

scalable modeling and testing methods. Second, a building’s

response to a set of given temperature set points, weather con-

ditions and occupancy levels is uncertain. However, building

HVAC systems can still be expected to provide a reliable DR

resource in future energy systems, because that uncertainty can

be quantified through repeated testing. Third, in contrast with

several previous field studies where HVAC system flexibility

was mainly provided by reduced electricity consumption from

the ventilation fans [6] (note that those studies consider shorter

time scales), in our experiments the HVAC system response due

to reduced building cooling loads was much larger than from

changes in fan loads. A possible explanation for this difference

is the more recent building control system logic that is opera-

tional on the buildings in our testbed. A key implication from

this third finding is that building flexibility models will need to

capture the full cyber-physical response of buildings.

2. Context and related work

2.1. Motivation

As electricity grids progressively decarbonize, electrifying

heating and cooling will increasingly become an option to de-

carbonize building energy systems. In 2018, electricity already

represented 34% of world building energy use [1]. Buildings

represented 53% of world electricity consumption.

In fast-changing electricity grids, existing flexibility needs

are exacerbated by the integration of non-dispatchable wind and

solar generation. Options include short and long duration elec-

tricity storage, transmission expansion, and demand-side man-

agement. Flexibility on durations of 10 hours and longer is

sorely needed [7]. The daily timescale could be a natural fit for

energy systems serving building Heating, Ventilation and Air

Conditioning (HVAC), where relevant timescales are typically

slower than for other electricity-consuming energy assets.

Active management of building energy consumption offers

a lower-cost alternative to sizing systems based on peak loads.

It can reduce consumption, achieve environmental benefits, and

increase resilience in both new and old buildings. A first set of

opportunities exists through continuous optimization of a build-

ing’s operation, without impacting occupant comfort. Second,

deeper energy flexibility needs to be made available, whether it

is to respond to DR events in a market or to enhance resiliency

and adaptability during supply shortages or demand surges.

The U.S. Department of Energy estimates the value of the

untapped opportunity for Grid-interactive Efficient Buildings

2



(GEBs) to be between $8 billion and $18 billion annually by

2030, or 2–6% of total U.S. electricity generation and transmis-

sion costs ($100-200 billion cumulative benefits from 2021 to

2040, in 2019 dollars) [8]. Through demand flexibility and en-

ergy efficiency, GEBs could decrease US CO2 emissions by 80

Mtons per year by 2030, 6% of total US power sector CO2 emis-

sions. US buildings currently account for over 70% of electric-

ity use [4] and 33% of CO2 emissions [9].

In electrified commercial buildings, flexibility from HVAC

systems provides value for the electric grid in two coupled ways.

First, DR improves resilience and lowers infrastructure require-

ments both for the building energy system and for the wider

electric grid. DR is available both from the heating and cooling

equipment (chillers, heat pumps, boilers) and from the venti-

lation fans, which typically represent a significant but smaller

fraction of total electric load. Second, when heating and cool-

ing infrastructure is shared, e.g. in a district energy system,

building-level thermal DR also provides value to manage the

portfolio of buildings and more efficiently schedule district-

level thermal energy operations. In an electrified district en-

ergy system with thermal storage like this study’s testbed [10],

building-level thermal DR unlocks district-level electrical DR.

2.2. Temperature set point adjustment strategies

This work focuses on flexibility strategies based on temper-

ature set point adjustments. The design and implementation of

commercial building HVAC systems varies significantly. Their

primary control objective does not and is to maintain occupant

thermal comfort. This is typically treated as equivalent to main-

taining the different zones within temperature “deadbands”, de-

fined by heating and cooling temperature set points [11].

In 22% of US commercial floorspace, the thermostats that

control these deadbands are programmable [12] and are there-

fore a frequent target for flexibility strategies [5]. Temperature

set point strategies do not require significant reprogramming of

internal building energy management control systems, which

is why they are sometimes referred to as “supervisory con-

trol”. They are likely to be a scalable, easily implementable,

and lower cost alternative to methods that issue commands to

HVAC equipment directly. Numerical and field studies have

also shown that they would be acceptable from the perspective

of occupant comfort, especially if occupant comfort is explic-

itly considered in the control strategy [13].

The simplest strategy uses Global Thermostat Adjustments

(GTA), in which one master thermostat controls the entire build-

ing [5]. A review of commercial buildings enrolled in mostly

GTA-based DR programs in California from 2003 to 2010 con-

cluded that they were able to provide 13% reductions in peak

afternoon demand on average (from 5 to 15%) [14].

Physics-based digital twins for buildings (EnergyPlus, TRN-

SYS, or eQuest) can be used to simulate many different scenar-

ios and to characterize the potential for demand flexibility. On

the annual timescale, it was found that increasing the cooling

set point from 72°F to 76°F reduces energy consumption by

10% in a reference medium-sized office building with strong

ventilation constraints [15]. When changes in the zone-level

minimum air flow rates were allowed, savings grew to 20% at

76°F, 30% at 78°F, and 40% at 80°F. Reported savings were av-

eraged over seven US climate zones, and were highest for San

Francisco, the simulated city that is closest to our testbed. In

another study with reference office buildings of different sizes

and construction types, re-optimizing the center of the dead-

band daily in the range of 22.5±3°C resulted in average an-

nual savings of 10-37% versus maintaining the setpoint fixed

at 22.5°C (these simulations used a 3°C-wide deadband) [16].

In both cases, the ranges reflect simulations for several cli-

mate zones and building sizes. While both studies targeted en-

ergy efficiency from more flexible temperature setpoint settings,

their findings also suggest strong flexibility on a daily or hourly

timescale with a similar strategy. On the hourly timescale, sim-

ulations suggest that the response of HVAC systems to faster

changes is dynamic and varies with time of day, day of week,

and outside weather conditions [17, 18].

While physics-based numerical simulations are most often

chosen to evaluate the impact of different control strategies,

they cannot replace the value of data from field tests, especially
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as technologies near deployment. Comparisons of simulations

to experiments show that it is often difficult to fully capture the

physical and operating characteristics of real-world commercial

buildings with simulations only [17, 6].

Also, simulation models typically rely on inputs such as ge-

ometric and physical parameters from buildings. Generating

and maintaining models for real buildings is time-consuming,

both in cases where a small team manages a large portfolio of

buildings and in cases where the building doesn’t have a dedi-

cated operator.

While simulations point to credible potential from temper-

ature set point adjustments, they need to be validated on site.

Of course, testing real buildings is challenging. Earlier field

tests suffered from small sample sizes that made statistically

significant results challenging to obtain [5]. Still today, experi-

ments yield discrepancies and sometimes contradictory results

between tested buildings, even when procedures are automated.

Often cited drivers for discrepancies include 1) the selection of

the baseline method and its accuracy, 2) limited site specific

information, and 3) control accuracy [19, 6].

The widespread adoption of programmable actuators and

sensors makes testing cheaper, easier to automate, and to repli-

cate. Driven by experimentation capabilities, experiments re-

ported on in the literature increasingly involve more samples,

supporting more quantitative statements, such as the ones that

are possible in this paper. This is needed to build confidence

in DR technologies. The variability and discrepancies that are

often observed between field studies reinforce the need for stan-

dardized testing methods to enable mass DR deployment.

2.3. Relation to Model Predictive Control approaches

Direct control of building equipment and actuators based

on Model Predictive Control (MPC) technologies has been pro-

posed by several researchers as a more energy efficient and ro-

bust alternative to the HVAC industry’s current standard of us-

ing Ruled-Based Control (RBC) [11, 20]. Beyond energy effi-

ciency improvements, MPC-equipped buildings would also be

easier to enroll in DR programs, because controllers could now

be reprogrammed to account for the benefits of responding to

DR events. But, despite over two decades of significant re-

search activity, including several full-scale demonstrations [21,

22, 23], these approaches have not been widely adopted by in-

dustry [20].

In many of these prior studies, authors note that while MPC

approaches have been shown to dramatically outperform naive

control strategies (e.g. fixed controls), the performance gains

are typically mild when compared to well-implemented RBC.

Implementing MPC strategies also requires significant upfront

engineering time and cost. Since building HVAC systems are

not standardized, deploying the technology typically requires

customized and non-scalable integration work to instrument a

new unique set of actuators in each new building and tailoring

models and control designs. Poor information and communi-

cations infrastructure is a strong limiting factor in commercial

buildings and will remain so for the foreseeable future [12].

Beyond upfront costs, MPC strategies also require significant

maintenance. Since the usage of buildings changes over time,

e.g. due to tenant improvements or HVAC system retrofits, the

models that MPC relies on will also need to be updated to re-

main accurate.

Our conclusion from the lack of adoption by industry is that

a new research approach is now needed. There is strong value

in researching less invasive control strategies that do not seek

to replace the industry standard RBC strategies but instead to

augment them, e.g., through distributed temperature set point

strategies like those that are experimented with in this work.

These less invasive strategies remain compatible with the gen-

eral MPC framework. MPC would now be used for controlling

higher level and more generic set points, possibly across a large

number of buildings at once, in an approach sometimes referred

to as supervisory control. These less invasive strategies will of-

ten be cruder, so they can and should use prior, equipment-level

MPC results as an optimal benchmark. A key challenge to en-

abling MPC for supervisory control is of course the develop-

ment of suitable models, which is a main goal of this work.
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3. Materials and methods

3.1. Experiment design

Cooling set points were adjusted every two days in the morn-

ing and cycled repeatedly between a low (74°F, 23.3°C) and a

high (76°F, 24.4°C) value. A DR scenario consistent with this

simple experimental setup is one where occupants need to be

notified one day in advance that tomorrow will be a DR day, so

that they have the option not to come to work. Zone-level heat-

ing set points were fixed to 68°F (20°C) for the entire duration

of the experiments, to minimize heating loads. Prior to the ex-

periments, a number of sensitive zones were identified in each

building and excluded from the experiments. All other zones

received the same set point commands throughout the experi-

ments. This set point strategy is similar to what is sometimes

referred to as Global Temperature Adjustments (GTA) [5], but

with the option to enforce the adjustment for only a fraction of

the zones.

3.2. Experiment testbed

3.2.1. Buildings

The experiments were conducted on six commercial build-

ings on a university campus in Northern California (Warm-summer

Mediterranean climate) during the summer of 2021. Summary

characteristics for the buildings are presented in Table 1. Over-

all, the testbed covers 56,000 m2. Three buildings are mainly

comprised of office and classroom space, two have a signifi-

cant fraction of laboratory space and the last building houses a

conference center along with offices. 45 to 76 days of experi-

ment data were collected for each building. Note that while the

age of the buildings varies by over a century, all buildings un-

derwent significant retrofits since their construction date. The

oldest building was constructed in 1893 but its HVAC system

underwent major upgrades in 2015. These buildings were com-

pliant with regulations specified by California’s Title 24 at the

date of their construction or last major retrofit, so building en-

velopes and mechanical systems can be considered comparable

to modern commercial buildings in California. The two labora-

tory buildings are much more energy intensive. Process chilled

water loops are expected to represent a significant fraction of

the cooling consumed by these buildings (not sub-metered).

Temperature and ventilation requirements are also stricter in

these buildings.

3.2.2. HVAC equipment and controls

In the experiment testbed, cooling is supplied to the build-

ings by a Central Energy Facility through a chilled water loop

system. Two types of HVAC systems extract cooling from the

chilled water loop in the buildings: (1) centralized systems com-

prised of Air Handling Units (AHU) and Variable Air Volume

systems (VAVs), and (2) distributed systems comprised of Fan

Coil Units (FCUs). A recent survey estimated that 30% of com-

mercial US floorspace is served by AHU-VAV systems [12].

A schematic for the AHU-VAV system is provided in Fig-

ure 1A. In the AHUs, fans powered by electrical motors blow

air over a chilled water coil to extract cooling from the chilled

water loop and maintain the air leaving the AHU at the AHU’s

target pressure and temperature. The cooled air is blown through

a central duct to the zones, where the VAVs control the flow rate

of air that is sent to each zone and can also reheat the air.

Equipment-level controllers were not modified for this study.

The AHUs and the VAV systems each have their own con-

trollers, typically programmed according to the same general

logic, but often implemented differently from one building to

the next or even within a building. The VAV system controller

attempts to maintain the temperature measured inside the zone

between the cooling and the heating set points (the temperature

“deadband”) and the flow rate of air entering the zone within de-

sign boundaries, using a mechanical damper to adjust the flow

rate of air to the zone. When the VAV is unable to maintain the

associated zone’s temperature within the specified deadband, it

issues a request for a higher discharge pressure or a lower dis-

charge temperature to the AHU. The AHU controller sets the

AHU’s fan speeds and the position of a chilled water valve that

determines the flow rate of the chilled water that is exposed to

the air inside the AHU. Combined, these two parameters deter-

mine the pressure and temperature of the supply air. We note

5



CONF-1 OFF-2 LIB-3 OFF-4 LAB-5 LAB-6 Total
Type OFF/CONF OFF/CLS OFF/CLS OFF/CLS LAB/CLS LAB/CLS –
Year of construction 2000 1893 1996 1998 1965 1963 –
Year of last retrofit 2021 2015 2021 – 2020 2018 –
Average cooling
(MJ/m2/day)

0.68 0.69 0.37 1.24 4.84 2.30 1.35

Average cooling
(kWh/m2/day)

0.19 0.19 0.10 0.35 1.34 0.64 0.38

Average electricity
(kWh/m2/day)

0.10 0.09 0.15 0.28 0.81 0.59 0.28

Floors 4 3 7 4 5 5 –
Air Handling Units 5 2 13 4 2 4 17
Variable Air Volume
systems

136 33 143 217 0 0 529

Fan Coil Units 0 50 0 12 117 166 345
Controlled zones 136 73 139 223 117 133 821
Excluded zones 0 10 4 6 0 33 53
Measured zones 136 83 143 229 117 166 874
Daily samples 45 63 54 75 72 76 385
Area (1,000 m2) 13.5 2.6 15.8 9.8 7.0 7.2 55.7

CONF-1 OFF-2 LIB-3 OFF-4 LAB-5 LAB-6

CLASS LABS
CLASSROOMS

GENERAL USE FACILITIES
LIBRARY FACILITIES

OFFICES
SUPPORT FACILITIES

UNASSIGNABLE AREAS

Table 1: Summary characteristics of the buildings in the experimentation testbed. OFF: office, CONF: Conference, LIB: Library, CLS: Classroom, LAB: Research
laboratory. Building cooling and electricity loads are measured separately. Building electricity loads do not include energy required to produce cooling. Table S1
provides an indicative breakdown of floor space by usage.

that in most AHUs in this study’s testbed, supply air pressure

and temperature reset strategies were implemented, which is in

contrast with many prior field studies where the supply air tem-

perature is maintained fixed, typically at 55°F [5, 6]. These

reset strategies, that use a logic referred to in the industry as

Trim-and-Respond, are now part of the sequence of operations

recommended by the American Society of Heating, Refrigerat-

ing and Air-Conditioning Engineers (ASHRAE) [24]. Finally,

the FCUs extract cooling directly from the chilled water loop at

the zone-level. They are more common in laboratory buildings

in the testbed.

The physical and controls configuration of the different HVAC

systems varies from zone to zone and building to building. How-

ever, all zones attempt to control their temperature to a specified

deadband, defined by heating and cooling set points, which is

why temperature set point strategies are a naturally scalable su-

pervisory control strategy. In the experiments reported on in

this paper, the controls logic for the different HVAC systems

were not modified for the experiments, and correspond to the

industry standard of rule-based controls. The behavior of these

control systems is considered to be an integral part of the build-

ing response function that is estimated through the collection of

data during the experiments. The building response functions

that were estimated capture the entire cyber-physical response

of the buildings. They are directly usable by an energy system

operator, without needing to communicate any specifics about
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Figure 1: Experiment testbed and illustration of experimentation protocols. (A) Building schematic. (B) Software overlay. (C-D) Histograms for hourly temperature
and daily averages measured at the campus weather station. (E-H) Daily profiles for key variables in OFF-2 where mean daily outside air temperatures are between
65°F and 67°F (11 days of high set points and 14 days of low set points). A dew point below 60°F is typically associated with dry conditions.

the building’s cyber-physical parameters. In this framework, an

update to the building control system is treated similarly to an

energy retrofit and triggers new stress tests to assess whether

the building model needs to be updated.

3.2.3. Experimentation software systems

Several different software layers interact to control and mea-

sure the behavior of the HVAC systems in the test buildings, as

shown in Figure 1B. Rather than communicate with the zone-

level actuators and sensors directly, our approach is to use a

custom-built software overlay to automatically schedule and

send commands, as well as collect and visualize data from the

building energy management systems. This custom software

overlay was written in Python and communicates with pre-existing

building energy management systems that relay information to

the zone-level.

To connect to zone-level actuators and sensors, the soft-

ware overlay leverages functionality from the open-source py-

haystack module [25], that allows users to connect to a server

implementing the Haystack semantic model. Project Haystack

is an open-source initiative to standardize semantic models for

working with IoT data [26]. The Haystack server connects to

network controllers (typically, one per floor) that then relay in-

formation to and from the zone-level controllers. The software

overlay is also capable of connecting to a separate data historian

used by the university to manage utility meter data. This system

is used to retrieve records of chilled water and electricity usage

per building.

The custom software overlay system was installed on a cen-

tral server on the university’s internal IT system from which it

could securely communicate with the different buildings in the

testbed. A major advantage to this approach is that it is nat-

urally scalable. The underlying building management systems

in the tested buildings were procured from different vendors

and installed by different contractors, so that each building has

its own unique system of software layers and often customized
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controls. After an integration process however, each new build-

ing could be controlled in a similar fashion by our central soft-

ware overlay.

3.2.4. Experiment monitoring and data collection

Data collection began on June 16th in all buildings except

LAB-5 (began June 18th) and ended on August 30th in all build-

ings except CONF-1 and OFF-2 (ended August 17th). During

the experiments, weather conditions were measured continu-

ously at the campus weather station. Temperatures and humid-

ity levels recorded at the campus weather station are shown by

the histograms for temperatures and dew point temperatures in

Figures 1C-D. Summary data for additional measured weather

data, on solar irradiation, wind speeds and relative humidity can

be found in Figure S12. In Figures 1E-H, daily profiles for key

variables in OFF-2 on days with mean daily outside air tem-

peratures between 65°F and 67°F provide a visual summary of

experiment protocols. On each experiment day, either a high

or low cooling set point was broadcast to all of the zones that

were included in the experiment. Figure 1F shows the median

of these set points, computed across zones. Chilled water me-

ters measured the building-level chilled water usage, or load.

Reductions in chilled water load from the low (blue) to high

(red) set point days shown in Figure 1G correspond to the ben-

efit from DR. Building-level cooling loads were measured from

the flow rate of chilled water going through the building and

the difference in temperature between the building supply and

return water. Figure 1H shows the median of the temperatures

that were measured by sensors in the different zones. They were

higher on the high (red) than on the low (blue) set point days.

Higher temperatures correspond to the cost from DR (occupant

discomfort). For zone-level data, the median is preferred over

the average as a summary statistic that is more robust to the

data outliers that can be very large in some buildings. Other

physical variables are measured throughout the buildings dur-

ing the experiments and used to interpret results, including the

operating state of different components of the HVAC systems

and aggregate building electrical load.

During the experiments, writing of zone-level set point ad-

justments was not perfect. Communication delays and errors

were routinely observed in some buildings and are thought to

be due to overloading of network and zone-level controllers. To

address this, our custom software system also includes mon-

itoring capabilities and can automatically verify which zones

responded to a command followed by rescheduling that com-

mand for those zones that failed their attempt, due e.g. to net-

work overloading. This is further detailed in the Supplementary

Information (SI) to this paper, where Figures S10 and S11 show

the target and effective set points that were written during the

experiments. Treatment effects presented in the results section

are computed with respect to the target set points, rather than

the effective ones.

4. Results

This section presents results on the impact of increasing

the temperature set point by 2°F in the tested buildings on 1)

building cooling load, 2) building electricity load (excluding

for cooling), 3) overall building electricity load (including an

estimate of electricity for cooling) and 4) room temperatures.

To estimate the “treatment effect” associated with the set point

change, functional forms are specified for the relationship be-

tween the different dependent variables (building energy loads,

zone temperature percentiles) and a set of explanatory variables

(temperature set point, weather variables, building operational

schedule).

For each of the modeled dependent variables, ordinary least

squares (OLS) estimates are computed for the model param-

eters using experimental data collected during the summer of

2021. Summary modeling results are presented for each vari-

able in this section. Modeling choices are discussed in more

detail in the SI.

4.1. Cooling load

To study the impact of increasing temperature set points

on building-level energy for cooling, we compute the ordinary

least squares (OLS) estimate for the parameters of a linear model
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Figure 2: Experiment results: energy for cooling. A-F) Daily energy for cooling increases with mean daily temperatures and decreases when the cooling set points
are increased. Empirical data collected during the summer of 2021 and log model from equation 1. G-H) Measured effect of OAT and set point change on energy for
cooling. Additional numerical results are reported in Table S2 and data in different units are shown in Figures 1 and 2. Model structure and predictors are discussed
in Section 5.

expressing the logarithm of energy for cooling as a function of

mean daily Outside Air Temperature (OAT), an indicator vari-

able for whether the scheduled set point was 74°F or 76°F, and

an indicator variable for weekdays,

log y = αT + βIS P + γIW + δ + ε. (1)

In this equation, y is energy for cooling, T is the mean daily

temperature measured at the campus weather station, IS P is the

indicator function taking a value of 1 if the scheduled zone cool-

ing set point is 76°F and 0 if it is 74°F. IW is the indicator func-

tion taking a value of 1 for weekends and 0 otherwise. α, β, γ,

δ are the parameters to be estimated, and ε is an error term.

The main assumption underlying equation 1 is that the im-

pact of changing the set point on energy for cooling is a fixed

percentage, independent of outside air temperatures. It also as-

sumes that one degree of outside air temperature increase in-

creases the energy for cooling by a fixed percentage, indepen-

dent of set point change. Similarly, whether the day is a week-

day or a weekend is assumed to impact served cooling by a fixed

percentage. In Section 5 we discuss the assumptions underlying

this specification and alternative functional forms.

As a reminder, served cooling loads are measured at the

building level from the flow rate of chilled water going through
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the building and the difference between the chilled water tem-

perature in the supply and return loops. Data are also presented

in the SI for cooling loads measured in different units, includ-

ing estimates for the electricity required to produce the chilled

water to meet these loads from chillers (see Figures S1 and S2).

Figures 2 A-F show how daily energy for cooling increases

with the daily average of OAT, using scatter plots generated

from experimental data along with superimposed lines corre-

sponding to the estimated models for energy for cooling in each

building. The full blue, respectively red, line shows the esti-

mated model for cooling load on weekdays with a set point of

74°F, respectively 76°F. The dashed lines similarly show the

estimated models on weekends.

y = eα̂T+δ̂ full blue line, (2)

y = eα̂T+β̂+δ̂ full red line, (3)

y = eα̂T+γ̂+δ̂ dashed blue line, (4)

y = eα̂T+β̂+γ̂+δ̂ dashed red line, (5)

where ·̂ denotes the OLS estimate of a parameter. Numerical

values for the estimated parameters and the corresponding p-

values are reported in Table S2. The R2 statistics in that table

indicate that the predictors collectively explain from 80 to 96%

of the variance in cooling load for OFF-2, LIB-3, OFF-4 and

LAB-6, 66% for CONF-1, and 74% for LAB-5.

The effect on energy for cooling of average OAT and of in-

creasing the zone temperature set point by two degrees Fahren-

heit is summarized in Figures 2 G-H. Figure 2 G shows the per-

cent increase of served cooling per degree Fahrenheit increase

in average OAT, eα̂ − 1. For each building, the expected value

estimate is shown as a dot, and the vertical line denotes the

95% confidence interval estimated during the OLS procedure.

The right panel in Figure 2 H similarly shows the percent de-

crease of served cooling from increasing the temperature set

point, eβ̂ − 1. While the impact of the temperature set point

change is more differentiated across buildings than the impact

of average OAT, office-type buildings are overall more respon-

sive to both predictors than the laboratory-type buildings (13-

28% versus 3-4% in Figure 2 G). Figure 2 H indicates that a

10°F increase in mean daily OAT results in a 2.0 to 2.3 factor

increase in served cooling in offices and classrooms, and a 1.5

to 1.7 factor increase in labs.

The sensitivity of served cooling to average OAT, measured

by α̂ in Table S2, is consistent with building type. In the of-

fice and classroom buildings (CONF-1, OFF-2, LIB-3, OFF-4)

a 1°F increase of the average OAT is associated with a 7.5 to

8.9% increase in served cooling. In the laboratory buildings

(LAB-5 and LAB-6) a 1°F increase of the average OAT is asso-

ciated with a 4.1 to 5.8% increase in served cooling. Schedules

vary from building to building, as confirmed by the numerical

values found for γ̂. Served cooling drops very significantly on

the weekends in OFF-2, significantly in OFF-4, noticeably in

LAB-6, and very little in LAB-5. For CONF-1 and LIB-3, the

building HVAC systems are turned off during the weekends and

weekend data are not considered.

Several reasons could explain why the laboratory buildings

are less responsive to the set point increase. These two build-

ings have a larger number of sensitive zones that are excluded

from the experiments. Laboratories have stricter air ventilation

requirements than office buildings, which tends to reduce the

impact of set point changes on chilled water usage. Although

sub-metering is not available, it is expected that a significant

fraction of the total chilled water usage in the laboratory build-

ings is associated with the process chilled water loop (e.g. to

cool equipment), while the HVAC system air handlers are the

main consumers of chilled water in the office-type buildings.

The two laboratory buildings have different HVAC equipment

and control logic than the office-type buildings, as they rely on

fixed set point AHUs and variable set point FCUs while the

office-type buildings rely on variable set point AHUs and VAVs.

Finally, writing set points was not as reliable as in the other

buildings (see Figures S10 and S11).

4.2. Electricity loads
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Figure 3: Experiment results: electricity loads (including for cooling water). (a) Daily electricity as a function of mean daily temperatures of the cooling set points.
Empirical data collected during the summer of 2021 and log model from equation 1. (b) Measured effect of OAT and set point change on electricity. To estimate the
electricity required for cooling water, different assumptions are made for chiller Coefficient Of Performance (COP). Numerical results for a COP of 5.5 are reported
in Table S4.
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4.2.1. Electricity loads excluding for cooling water

A similar approach is taken to estimate the impact of in-

creasing room temperature set points on building-level elec-

trical energy consumption. We compute OLS estimates for a

model corresponding to equation 1 where y is now the build-

ing’s electrical consumption. These measurements exclude elec-

tricity for cooling water, but include electricity for moving air

throughout the building with the AHU fans. The AHU fans are

not sub-metered.

Figure S3 reports results for electricity consumption in a

similar format to Figure 2 and shows a small (less than 2%)

reduction in building electricity consumption when the temper-

ature set points are increased. For most buildings in the testbed,

the 95% confidence intervals on the estimated effects are also

quite large. The p-values in Table S3 indicate the effect is sig-

nificant only for OFF-2 and OFF-4 at the 5% level. OAT is also

observed to have an overall limited impact on building electric-

ity consumption. Together, these results suggest either that the

setpoint changes and OAT have a limited impact on fan energy

consumption and/or that changes in fan energy consumption are

small compared to other electricity uses inside the buildings.

4.2.2. Electricity loads including for cooling water

Since most DR applications focus on electricity demands,

we also generate impact estimates for overall building electric-

ity loads. Electricity for cooling cannot be measured directly in

the testbed, since the buildings are supplied by a district cooling

system. 4.4% of US commercial floorspace is currently served

by district cooling systems and 19% by central chillers [12]. To

generalize our results to both categories, we estimate electric-

ity for cooling assuming a constant chiller Coefficient Of Per-

formance (COP). In reality, the COP will not be constant and

will depend on OAT, relative humidity, and in a district cooling

system, on the possibly time-dependent combination of chillers

that are producing. For example, the effective COP of the cen-

tral chiller plant that supplies this testbed typically varies from

3.5 to 4.5. To assess the sensitivity of results to chiller COP,

we use a representative range for the industry: a COP of 3 to

represent in-building cooling systems, 5.5 to represent electri-

fied district cooling systems, and 8 to represent more efficient

technologies than what is currently deployed [27].

Figure 3 presents results for the overall daily building elec-

tricity loads, including these calculations of electricity for cool-

ing. Estimates are computed for specifications corresponding

to equation 1 and numerical results are reported in Table S4.

Assuming a coefficient of performance of 5.5 for the electric

chillers, the impact of the 2°F set point increase is measured to

be 4.6 to 9.4% for CONF-1, OFF-2, and OFF-4, 2.5% for LIB-

3, and less than .8% for LAB-5 and LAB-6. Consistent with our

cooling results, the buildings that are most responsive to the set

point changes are also the ones that are most responsive to OAT.

These results are sensitive to the efficiency assumption for

the electric chillers supplying the cooling. Increasing the effi-

ciency of the chillers reduces the responsiveness (and vulner-

ability) of overall electric load to higher temperatures but also

decreases the overall electric flexibility potential, since a large

fraction of the flexibility is attributable to space cooling.

4.3. Room temperatures

To study the impact of increasing room temperature set points

on room-level temperatures inside the building, we compute

OLS estimates for the parameters of a linear model express-

ing different zone temperature percentiles as a function of mean

daily OAT, an indicator variable for the scheduled zone set point,

and an indicator variable for weekdays,

Tp = αT + βIS P + γIW + δ + ε. (6)

Here Tp is a summary statistic for room temperatures through-

out the building: the 8am to 8pm average of the pth percentile

for room temperatures, where the percentile is taken over zones.

The main assumption underlying equation 6 is that Tp changes

by a fixed offset (in degrees F) for every degree of mean daily

OAT, due to the treatment (set point change) and as a function of

whether the day is a weekday. Importantly, for OAT we use the

average over the full 24 hours of data, because OAT is a depen-

dent variable and nighttime temperatures could have an effect

12
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Figure 4: Experiment results: room temperatures. (a) The 8am-8pm average for the 50th percentile of room temperatures increases with mean daily OAT and as the
cooling set points are increased. Numerical results are reported in Table S5.
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because of thermal inertia. For room temperatures on the other

hand, we only use data from 8 am to 8 pm, because tempera-

tures during the unoccupied periods at night are not important

for the thermal comfort of the occupants.

Scatter plots for experimental data are shown in Figures 4A-

F along with superimposed lines corresponding to the estimated

models for the 8am-8pm average for T50 (similar conventions as

Figure 2). Additional numerical data are reported in Table S5.

Figures 4G-H show the effects of the treatment and OAT on T10,

T25, T50, T75 and T90, respectively.

A 2°F set point increase resulted in an increase of less than

1.5°F in our summary statistics for room temperatures (Tp’s).

We also measure a small but statistically significant effect of

average daily OAT. A 10°F increase in mean daily OAT resulted

in a 0.1 to 2.1°F increase in the Tp’s. The effect is larger for

the two laboratory buildings and the library than for the office

buildings. In some buildings, the effect of the treatment and of

the OAT grows with the percentile, but not in others. In OFF-2

the 8am-8pm average for the median zone temperature (T50) is

on average 0.88°F hotter on the weekend which is more than

the impact of increasing the set point by 2°F (0.04°F).

The indoor temperature data in Figures 4A-F are all below

the corresponding cooling set points, sometimes substantially.

Additional scatter plots for the 50th, 75th, and 90th percentiles

for room temperatures at 3pm in Figures S4-S6 show that room

temperatures vary significantly within the buildings. They also

vary depending on the time of day. The observation that the

temperatures in many rooms are often below the cooling set

point helps explain why the Tp’s are found to increase with

OAT in Figure 4 H: this is likely the symptom of over-cooling

from ventilation constraints in multi-zone HVAC systems, as

discussed by several previous authors [28, 29, 30]. Ventilation

constraints were also shown to have a strong limiting effect on

the impact of temperature set point changes using simulated

data by Hoyt et al. [15]. As OAT increases, overcooling de-

creases, and the Tp’s increase. Another complicating factor is

that occupants have the option to adjust their thermostat by up

to 2°F in most rooms, which could contribute to temperature

heterogeneity.

Figure S7 shows the measured effects of OAT and the tem-

perature set point increase on zone temperatures at different

hours of the day. Unsurprisingly, the effect of both predictors is

very limited at 6 am. At the other hours, the impact of raising

the set point is less than 1°F for all buildings expect CONF-

1. CONF-1’s temperatures are the most responsive and all Tp’s

increase the most at 3pm, on average by between 1.1 and 1.3°F.

Finally, some buildings are warmer than others, despite re-

ceiving the same set points. Differences across buildings are

often larger than the impact of the set point change or of OAT.

Overall, we find limited impacts on measured room temper-

atures from increasing the cooling set point by 2°F. In the build-

ing where temperatures responded the most, CONF-1, room

temperatures increased by at most 1.5°F at 3 pm (Figure S7).

In other buildings and at other times of the day, a response of

1°F or less was typical. These results suggest potential for ad-

ditional flexibility and efficiency gains in the tested buildings.

5. Discussion

5.1. Model specification

The models in Section 4 use a specification for the loga-

rithm of energy loads. As previously noted, the major under-

lying assumption is that the predictors have a fixed percentage

effect on the predicted variable. Results for an alternative spec-

ification, that is linear in energy loads, are presented in Fig-

ure S8 and Table S6. While a linear dependence of energy loads

on OAT is more consistent with a heat balance at the building

level, the model in equation 1 has several advantages.

First, the coefficients α, β and γ lead to a natural, unit-less

interpretation for the response of energy loads to their respec-

tive predictors that can easily be compared across buildings and

extrapolated: they measure the relative change in consumption

associated with the predictors, e.g. 100(eβ̂ − 1) is the estimate

for the percent change in energy from the set point change.

Also, while in section 4.1 we measure the impact of the set
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point change on chilled water consumption, in many applica-

tions electricity will be the main focus. Assuming a constant

conversion efficiency, the estimates remain directly applicable.

Second, equation 1 predicts that increasing the set point will

have a larger impact on energy loads at higher OAT, consistent

with previous work [19]. Our results on room temperatures in

Section 4.3 also offer a possible physical explanation for why

the response to the set point change might grow with OAT.

Those results show that the indoor air temperature is below the

cooling set point in a significant fraction of rooms. As OAT

increases, over-cooling decreases, a greater number of rooms is

closer to their cooling set point, and will therefore be directly

affected by a change in that set point. In contrast, the model

used for Figure S8 assumes the impact of the set point adjust-

ment is constant with respect to OAT.

Third, equation 1 has a statistical advantage over a model

that is linear in energy loads in that it reduces heteroskedastic-

ity. In the data, we observe that the magnitude of the resid-

uals from the linear equation grows with OAT. By reducing

heteroskedasticity, equation 1 leads to better estimates for the

standard errors on the model coefficients.

Equation 1’s main drawback is in its predictions at high

temperatures, which is also where it significantly deviates from

the linear model (Figure S8). But for most of the OAT range

for which data are recorded (specifically, from 62.5 to 72.5°F),

Figure S8 shows that the linear and logarithmic specifications

produce very similar results, consistent with a first-order Taylor

series expansion of the exponential function. The R2 statistics

reported in the SI also differ by at most 3%.

Finally, we note that while our results show that simple lin-

ear models are adequate for modeling daily loads, more com-

plex models will likely be required to capture hourly dynamics

(e.g., to capture thermal inertia effects).

Additional predictors. The sensitivity of the results in Section 4

was also tested by including the daily average for maximum

OAT, minimum OAT, wind, solar irradiation, and relative hu-

midity as predictors in equation 1. A summary for the cool-

ing models is shown in Figure S9. Including these additional

predictors did not significantly change our estimate for the im-

pact of the 2°F set point increase on energy for cooling nor

goodness-of-fit. The same is true for the impact of mean daily

OAT on energy for cooling, with the exception of the mod-

els with maximum and minimum daily temperatures. In that

case, including those predictors produced larger estimates, but

also larger confidence intervals, which can be explained by the

strong correlation between the average, maximum and mini-

mum daily temperatures. An advantage of using the average

rather than the maximum or minimum temperature is that this

predictor is less sensitive to faulty data measurements.

The number of occupants was not measured, but is expected

to have been fairly constant in most buildings apart from CONF-

1, where variability in occupancy could be the explanation for

the comparatively lower performance of the models.

Choice of treatment variable. Special care is taken in choosing

the treatment variable. In the models presented in Section 4,

the treatment variable corresponds to the set point command

that was scheduled to be sent to the building, not the actual

set point command that was adopted by the different rooms in-

side the building. Consequently, the variability in the outcome

data are attributable not only to the physical response of the

buildings, but also to the response of their software systems.

Figures S10 and S11 show how the software systems did not

respond perfectly. Two possible explaining factors are 1) occu-

pants have the option to re-adjust temperature set point locally;

and 2) network and controller overloading can cause commu-

nication delays and data loss between the centralized software

system and the rooms. Our choice of treatment variable yields

models that encompass the entire cyber-physical response of a

building energy system, which is more relevant to electric grid

or district energy system operators.

5.2. Informing operator flexibility decisions

Data-driven models for flexibility. Historically, most field tests

were used to complement and validate simulations by providing
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case studies and demonstrations. Ubiquitous sensors and actu-

ators promise a new paradigm under which field tests can play

a much more ambitious role in developing data-driven flexibil-

ity models for buildings. The work presented here provides a

blueprint for developing these models. The findings in this pa-

per suggest that if more ambitious experimentation programs

are conducted, a more ambitious role can be played by field

data. The data-driven models for building response functions

developed in this paper are directly relevant to electric grid and

district energy system operators. The response of buildings un-

der the change remains uncertain and variable, but the uncer-

tainty is quantified in the models, by providing statistical infor-

mation and guarantees that can be used by consumers of the DR

service when making their decisions, e.g. confidence intervals.

Past field tests were invaluable to demonstrate potential from

providing DR services through building energy systems when

the technology was in its infancy. As the technology nears de-

ployment, new, standardized field tests supported by rigorous

statistical analyses are now needed to build confidence.

Providing flexibility on other timescales through integrated en-

ergy systems. In contrast with most prior works reporting field

test data (see Section 2), the experiments here evaluate daily

rather than hourly flexibility. Indeed in many present applica-

tions, DR is provided on shorter timescales, e.g. to reduce peak

afternoon loads. However, daily flexibility strategies will often

be simpler to implement. What’s more, we argue that provid-

ing daily flexibility from building-level loads may turn out to

be just as valuable as hourly flexibility for two reasons.

First, there are expectations that longer term flexibility needs

will arise in future electricity grids [7]. Second, it is very likely

that in most real-life applications DR services from flexible

loads will be aggregated. When aggregated with other energy

systems, daily flexibility from building HVAC systems can un-

lock additional hourly flexibility from the integrated energy sys-

tem, e.g. at the electric distribution system level. In an elec-

trified district energy system with city-scale thermal storage

like the one that provides heating, cooling and electricity to the

buildings that are tested here [10], daily building-level flexibil-

ity unlocks more opportunities to provide hourly DR services

measured at the integrated system level [31]. Other integration

options include an electrochemical storage system at the distri-

bution level, or an electric vehicle fleet.

5.3. Value of stress tests for building energy systems

The experiments in this work highlight the value of develop-

ing and standardizing stress tests for building energy systems.

One of the most important benefits is to enable the develop-

ment of data-driven flexibility models that account for the full

cyber-physical response of buildings. Training and updating

such models will be cheaper and more scalable than for compu-

tational models that heavily rely on building design parameters

rather than on measured parameters. HVAC control logic is

a good example of an operational parameter that is non-trivial

to capture with computational models such as EnergyPlus, but

naturally captured when generating training data for data-driven

models through stress tests.

Baselines for DR. One specific area where the collection of

data through stress tests offers an opportunity to rethink prior

research is in the development of the baselines that are typi-

cally used to estimate a building’s actual contribution during an

event. Most prior works, reviewed in Weng et al. (2018) [32],

use deterministic estimates, either computed using a (weighted)

average of the previous ten days or a linear regression based

on prior data, possibly adjusted based on information from the

morning of the event. The data collected through stress tests can

be used to calibrate more robust probabilistic baseline models.

The experiments reported here also suggest including informa-

tion from after the DR event may be just as relevant as infor-

mation prior the event. The only constraint to implement such

a centered baseline scheme is to wait until the end of the DR

program to distribute rewards and penalties to participants.

Updating DR models. Energy infrastructure and large build-

ings are designed to last half a century, but the energy con-

sumption patterns of a building change over time. In a research

16



facility, for instance, new laboratory equipment has the poten-

tial to dramatically change the building’s energy profile. The

same is true in a large administrative building after a retrofit of

the HVAC system or a tenant improvement. These changes typ-

ically render previously developed digital twins based on simu-

lation models (such as EnergyPlus, eQUEST, TRNSYS) obso-

lete.

In contrast, the methods developed in this work can be used

to regularly and rapidly evaluate and update a building’s ther-

mal flexibility model. Figure 5 shows the sensitivity of the

impact of the 2°F set point increase and of mean daily OAT,

as estimated from models trained on a growing number of ob-

servations. Observations were ordered chronologically in this

analysis. As expected, the confidence intervals grow smaller as

more data is collected. For most buildings, the value of collect-

ing additional data points decreases after a few weeks.

Out-of-sample predictive power. To assess the predictive power

of the models, the last ten observations common to each data set

were excluded to form a “test set”. Models trained on a growing

number of observations were then evaluated against the test set.

Performance is reported in Figure 6. For all buildings except

CONF-1, the test set error gradually decreases as the number

of observations that are included grows. We also compute the

out-of-sample performance of the sum of the buildings (labeled

“Portfolio”) and observe that aggregating buildings improves

predictive power.

Energy efficiency and commissioning. Beyond flexibility, stress

tests provide an empirical measurement tool for building man-

agers to evaluate the benefits and costs of operational changes

and a continuous assessment of opportunities for improved en-

ergy efficiency. The experiments here show that cooling loads

are significantly reduced from increasing cooling set points by

2°F, with overall limited impacts to room temperatures. Where

acceptable to occupants, cooling set points could be raised at all

times and similar stress tests conducted to assess the flexibility

benefit from increasing set points from this new baseline.

Stress tests are a natural complement and extension to the

existing commissioning tools that can be used to dramatically

improve the energy efficiency of existing commercial building

stocks [33, 34]. In contrast with most existing commissioning

methods that test the behavior of individual actuators and sen-

sors, the experiments in this work test the overall cyber-physical

response of a building’s energy system. Control systems play

a large role in building energy consumption: one simulation-

based study found that upgrading control systems could save

23-30% energy in half of the US commercial building stock

[35]. Additionally, as flexibility services become more used,

flexibility-oriented commissioning tools will be needed. Stress

testing buildings will help maintain a state of operational readi-

ness that improve the reliability of the DR service.

5.4. Building response: cooling versus electricity

Our results provide an interesting perspective on previous

field tests where the main target for flexibility was the electric-

ity consumption associated with the AHUs [36, 6]. The flexibil-

ity source relied on in many of those experiments is a reduction

in the fan speed of the AHUs, resulting in a reduction of the

overall building electricity consumption [37, 38, 39]. In con-

trast, in these experiments the daily response of the electrical

loads is minimal, while that of the cooling loads is significant.

A first important difference is in the experiment time scale.

In many prior experiments, flexibility is provided on an hourly

time scale, typically in the middle of the day. In contrast, in the

experiments reported on in this paper, set points are adjusted

on a daily time scale. Transient temperature effects can be ex-

pected to play a larger role in hourly rather than daily experi-

ments. A second important difference is the AHU control logic.

While this is not reported in all of the prior studies referenced

above, for the major part it appears that they considered HVAC

systems where the temperature of the air leaving the AHUs to

supply the zones was fixed, whereas most AHUs in this testbed

used the more recent industry best practice of supply air tem-

perature resets [24]. AHU controllers in this testbed leverage

two main degrees of freedom to control the cooling power of

the air that is sent to the zones: the flow rate of air blowing over
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Figure 5: Collecting a growing number of observations gradually improves parameter estimates. Measured effect of set point change and OAT on energy for cooling
using the model in Section 4.1. The dots represent the average estimates and the vertical bars show the 95% confidence intervals. The number of observations (n) is
reported for each building, e.g. 10 to 44 observations are used for CONF-1.
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Figure 6: Aggregating buildings improves out-of-sample predictive power. Per-
formance is reported as Mean Absolute Percentage Error (MAPE) for a growing
number of observations, using ten days as an out-of-sample test set.

the chilled water coils, controlled by the speed of the fans; and

the flow rate of water through the chilled water coils, controlled

by the position of the chilled water valves. A third setting is the

fraction of building air that is re-circulated, but that was main-

tained fixed during the experiments so it is not considered here.

Together, these settings control the temperature and pressure

of the supply air. Finally, a third source of possible response

heterogeneity also noted in previous work [6] is the presence

of ventilation requirements that can enter in competition with

cooling requirements.

In summary, our results on cooling and electricity loads

show that new building control sequences could alter conclu-

sions from previous DR field experiments. In the experiments

reported on in this paper, flexibility was mainly provided from

the chilled water valves rather than from the fan speeds, in

contrast to previous field studies. However, the three possi-

ble causes for the difference that were discussed also indicate

that this will not always be the case. This further motivates the

need for scalable modeling and testing methods like the ones

discussed in this work.

6. Conclusion

A scalable empirical method based on the idea of stress tests

was developed to assess the cyber-physical response of com-

mercial buildings to temperature set point adjustments. The

method is generally implementable, and doing so will be of

value to building researchers and industry practitioners in at

least two ways. Previous literature reports large variability in

building response during DR events. This work shows how em-

pirical methods can be used to systematically measure, quantify

and explain that variability by also measuring explanatory vari-

ables such as the outside air temperature. These methods can

also be used during commissioning of a building as a system-

level diagnostic tool, or stress test, that represents a significant

departure from existing commissioning processes that overwhelm-

ingly rely on component-level diagnostic tools. Diagnostic tools

that rely on systems-level stress tests or tests to assess the over-

all responsiveness of buildings to perturbations in operating set

points will be valuable to demonstrate continued DR readiness

to consumers of DR services such as electric grid operators.

The flexibility model that was proposed is simple to cali-

brate and to interpret. It provides statistical guarantees that can

directly be used by electric grid or district energy system op-

erators calling on DR. The application of the empirical method

provides invaluable information to construct, maintain and up-

date a building’s weather-dependent flexibility model, includ-

ing quantitative statistical information about the building’s re-
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sponsiveness.

The response of six buildings to daily cooling set point ad-

justments was tested on a university campus in California (Warm-

summer Mediterranean climate). The buildings do not all re-

spond identically, and their response is uncertain. But, repeated

testing can be used to build data-driven models to quantify the

uncertainty, e.g. through confidence intervals. Data generated

through stress tests enables the development of models that also

capture the full cyber-physical response of buildings, which

will be required for energy operators to integrate DR resources.

The potential for and constraints on providing thermal and

electrical demand response from temperature set point strate-

gies was discussed. Also, the daily timescale considered here

is in contrast with the majority of prior works on building DR

that consider hourly or sub-hourly timescales. In integrated,

electrified energy systems such as the one we consider, chilled

water storage tanks can be used as a buffer between the electric

chillers used to produce cooling and the buildings that consume

it. Enabling daily flexibility in the served cooling loads at the

building level in turn unlocks both daily and/or hourly flexibil-

ity at the integrated energy system level.

This work provides a blueprint for developing reliable, scal-

able, experimental and testing methods with building energy

systems. These methods will lead to a better scientific un-

derstanding of energy loads in large, modern buildings, and

their flexibility in response to controlled perturbations. As dis-

tributed sensors and actuators continue to be more widespread,

these methods will become increasingly cheaper, scalable, and

attractive.

Data and code

Daily data from the experiments reported on in this paper

are released as part of the supplemental material, along with

code to reproduce Figures 2 through 6. A detailed description

of the data set that is released is provided in the SI.
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