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Decarbonization of electricity generation together with electrification of energy-and-carbon-
intensive services such as heating and cooling is needed to address ambitious climate goals.
Here we show that city-scale electrification of heat with large-scale thermal storage also cost-
effectively unlocks significant additional operational benefits for the power sector. We build an
optimization model of fully electrified district heating and cooling networks integrated with other
electric loads. We leverage real-world consumption and operational data from a first-of-a-kind fa-
cility that meets heating, cooling and electrical energy requirements equivalent to a city of 30,000
people. Using our model, we compute optimal operational strategies for the controllable loads
and thermal storage in this system under different economic hypotheses. In our example, elec-
trifying the previously gas-based heating and cooling infrastructure has led to a 65% reduction
in the overall campus carbon footprint. Through least-cost scheduling, the load shape of the
aggregate energy system can be flattened and annual peak power demand can be reduced by
15%. Through carbon-aware scheduling that takes advantage of variations in grid power carbon
intensity, heating and cooling emissions could further decrease by over 40% in 2025 compared to
the 2016 baseline, assuming a policy-compliant electricity mix for California. However, rethinking
electricity rates based on peak power usage will be needed to make carbon-aware scheduling
economically attractive.

Driven by the need to curb global emissions1,2, large-scale pen-
etration of renewables is occurring around the world3. While
adding carbon-free and zero-marginal cost renewable electricity
has many advantages, it creates a challenge for power grid oper-
ators both at the transmission and distribution system levels and
entails a necessary paradigm shift in overall system design and
operation to accommodate these new sources of variability4–9.
Electric loads can offer energy services and flexibility, in the form
of demand-side management10–13, to maintain the balance of
supply and demand that is so critical to reliable grid operations.
In this work, we explore a deeper integration between the heat
and power sectors in an urban setting through the grid-friendly
management of electrified district heating and cooling networks
with thermal storage. The discussion is of special relevance in
the context of rapid urbanization, grid decarbonization, and the
interaction between the urban environment and energy systems.

Alongside electricity and transportation, heat is one of the three
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main pillars of our energy systems, but also one of the major con-
tributors to carbon dioxide (CO2) emissions: the International
Energy Agency estimates that two thirds of global CO2 emissions
from fuel combustion are attributable to two sectors: the genera-
tion of electricity and heat (42%) and transport (24%) in 201514.
Heating buildings alone corresponds to about 13% of global en-
ergy demand15. While the word heat will be used throughout this
paper, most of the discussion applies to both heating and cooling
systems.

If heat and transportation are electrified in an uncontrolled
fashion, they become a threat to the stability of the power sys-
tem because of the sheer energy volumes involved. On the other
hand, there are numerous opportunities for virtual storage that
arise from the fact that physical processes, and therefore charac-
teristic operational times, are typically much slower in the heat
sector compared to the electrical energy sector. This potentially
significant source of flexibility will only appear through a deeper
integration of our energy systems across energy pathways and
scales16,17. Given that forecasting our long-term energy needs
is so difficult18, such cross-sectoral and structural flexibility will
have special value. There is a wealth of previous work on man-
aging demand-side resources to prove that exploiting their flex-
ibility is a cost-effective way of integrating renewable energy.
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At the residential and commercial levels, Thermostatically Con-
trolled Loads (TCLs) are a popular target19–28 because they rep-
resent such a high share of home energy consumption (80% in
Europe and 60% in the United States), but several other control-
lable loads show potential29–34. Industrial demand response has
also been studied extensively35–38 since the famous Alcoa alu-
minum smelting plant experiment39.

District heating systems originated in the 1880s and supplied
11.5 EJ of heat in 2014, 85% of which were for China, Russia, and
the European Union (to be compared with a total heat demand
from buildings of 74 EJ in 2014)15. District cooling systems orig-
inated much more recently, in the 1960s, and supply around 300
PJ of cooling each year (200 PJ for the Middle East, 80 PJ for the
US, and 10 PJ for Europe)15. In most of the European Union,
China and Japan, district cooling capacity represents less than a
percent of district heating capacity (except France, Italy, Norway
and Sweden where it represents less than 4%), to be compared to
30% in the United States, where the vast majority of district cool-
ing systems use chilled water supplied by steam-driven absorption
chillers40,41.

Large-scale, fully electric, district energy systems integrating
hot water and chilled water delivery such as the one that pro-
vides the data for this study remain first-of-a-kind experiments.
Only 1% of the energy used by district energy in the U.S. was
electrical energy (all for electric chillers). The bulk of the aca-
demic literature on integrating heat and electricity at the district
level has originated from and focused on European and, in par-
ticular, Scandinavian countries15,42–45. In the case of Sweden,
the country consumed 200 PJ of heat in 2014, 55% of which
were met by district heating and 28% by local heat pumps46.
Notable recent work has focused on optimizing design and oper-
ations, stochastic control for district heating networks, as well as
how the industry can adapt to heat demand reductions and fu-
ture energy prices47–52. A recent example of renewed interest in
district heating in the context of decarbonization and grid integra-
tion of large-scale renewable power is in northern China, where
Combined Heat and Power (CHP) plants constrain the flexibility
of the regional grid there53–55. In the winter, the (mostly coal-
based) CHP units are used to supply district heating networks,
but also produce electrical energy, thereby leading to high cur-
tailment rates for wind energy (15% in 2015)56. In the majority
of the literature related to district energy, CHP is the main heat
producer, and the (more recent) cooling networks receive much
less attention.

However, recent efforts have highlighted the value of large-
scale heat pumps, electric boilers and thermal storage for de-
carbonizing the energy system57–60. Calls for 100% renewable
energy systems emphasize the need for a holistic, cross-sector ap-
proach61,62. City63 and country-scale64,65 road maps highlight
that electrification of heat (and transport) will likely be required
to achieve climate goals and is possible without compromising
grid reliability and at low cost66, although other low-carbon heat
supply options have been explored, such as hydrogen-based path-
ways for micro-CHP67.

Here we expand on the benefits of electrified heating and
cooling by showing that, when achieved at the district scale, it

also opens the door to inexpensive flexibility for the power grid,
whether in the form of demand charge management, demand
response or carbon-aware scheduling. In this paper, we criti-
cally assess the financial, grid and carbon benefits of thermal-
storage-backed electrified district energy systems, in an opera-
tional context. We leverage a unique source of real-world data
to assess these operational and decarbonization benefits for the
power grid. A data-driven optimization model is built to study
the operations schedules for such systems under different pricing
schemes and used to show how they can provide flexibility, both
to the local energy ecosystem they serve and to the larger grid
they draw power from, by consuming or shedding load at differ-
ent times of the day.

By applying our modeling framework to a real-life case study,
we are able to provide insights into the opportunities from the
coupling of heat and electricity in solar-dominated power grids.
In this work, we assume that the heating and cooling infrastruc-
ture is fixed to our case study and study operational behavior
under different economic hypotheses. However, the insights we
derive are widely applicable to other district heat electrification
designs incorporating thermal storage at scale.

Storage-backed heat recovery to meet con-
current heating and cooling needs

As the main supplier of heating and cooling to over 150 buildings
on campus, the California-based Stanford Energy System Innova-
tions (SESI) project provides an ideal case study for this work68.
In a $485 million overhaul completed in 2015, the campus district
energy system switched from a gas-fired co-generation-based sys-
tem with steam distribution to the current electrified, integrated
heating and cooling system with hot and cold water distribution,
meeting the bulk of its heating and cooling loads with large heat
recovery chillers. These are electric heat pumps that use the re-
turn heating and cooling streams from the buildings as a heat sink
and source, respectively, and that simultaneously produce usable
heating and cooling streams. The energy system redesign led to
an estimated reduction of 65% in the annual carbon emissions
that can be associated with campus energy operations, from 200
to 70 thousand tonnes of CO2 (see Supplementary Information
Note 1; metric tonnes will be used throughout this paper).

From 0.6 to 2.9 TJ of hot water and 0.5 to 5.7 TJ of chilled wa-
ter is produced daily with electric heat pumps and stored in large
tanks before it is sent to the campus buildings. These also con-
sume from 1.9 to 2.4 TJ of electrical energy daily. Annually, the
campus uses 0.81 PJ of cooling, 0.57 PJ of heating and 0.75 PJ
of electricity. This represents the annual energy consumption of
33,000 households in California (more detailed energy consump-
tion data can be found in the Supplementary Information). Typi-
cal for a university campus, thermal loads are seasonal, whereas
electrical loads are mostly driven by occupancy. Although the
demand for hot water is dominant in the winter and chilled wa-
ter dominant in the summer, a significant daily overlap for heat-
ing and cooling demand can be observed. Figure 1 shows this
daily overlap in 2016 and how up to 51% of cooling and 90% of
heating loads could potentially be met by electric Heat Recovery
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Chillers (HRCs) simultaneously producing heating and cooling.
When there are greater energy needs for heating in the winter or
cooling in the summer, the HRCs are complemented by chillers
and gas-fired boilers, respectively. The maximum cooling output
of the chillers is 1.6 times that of the HRCs, and the maximum
heating output of the boilers is 1.5 times more that of the HRCs.

Nine different designs were considered: steam was compared
to hot water as a carrier for heat, co-generation was compared to
buying power from a utility and the value of heat recovery was
assessed68. The selected design was the lowest cost option, with
a net present cost of $1.3 billion from 2015-2050, to be compared
with $1.6 billion for the business-as-usual option. In the remain-
der of this paper, the discussion is focused on operational consid-
erations. We assume the infrastructure design is fixed, and assess
the additional financial, carbon and grid benefits from operating
this integrated system under different regimes.

Optimal operations scheduling for district
energy systems
To study the rational behavior of a district energy system under
different pricing signals, an optimization model is built to mini-
mize the campus energy bill over the course of a year. Like many
large energy consumers, Stanford pays a monthly price for gas
and both a time-varying price for electrical energy and a capacity-
based price for its maximum electrical demand (called a demand
charge). The problem solved here is that faced by the manager
of the CEP: (i) decide how much power and gas to buy from the
grid at each hour, and (ii) set the hourly schedule of the different
machines in the CEP in order to meet demand from the campus
buildings for electricity, heating, and cooling. The yearly schedul-
ing problem is formulated in the Methods section as a Quadratic
Program with around 150k variables and 240k constraints. This
formulation is implemented using the Julia JuMP package69 and
solved using the Gurobi software70. Since our aim is to assess the
operational value of thermal storage, we solve a planning prob-
lem based on historical data. It should be noted that our formu-
lation could be used almost as is to implement a control strategy
however, e.g. using a classic look-ahead algorithm like Model
Predictive Control71.

We use a modular approach to describe the different compo-
nents of the campus district energy system, where the different
terms in the objective function are additive and tied together by
global import variables for quantities such as electricity and gas.
A program was built to describe the rational behavior of the Stan-
ford energy system, but the framework that is used could easily
be extended to describe a district energy system with other com-
ponents, such as CHP for heat generation.

Real energy data are used, measured on campus during the
year of 2016 for the heating, cooling and electricity demand from
the campus buildings, as well as the publicly available Locational
Marginal Price (LMP) paid by the university. The possibility for
the campus management to self-impose a carbon tax is also mod-
eled. In that case, the price for electricity is augmented by an
hourly price that is calculated from the carbon tax and hourly
Average Emissions Factors (AEFs) for the California Independent

System Operator’s (CAISO) balancing area. These AEFs are es-
timated from the Intergovernmental Panel on Climate Change’s
Life-Cycle Analysis estimates for generation sources and CAISO
historical generation data, as described in detail in the Methods
section.

Power and energy scheduling
Figure 3 shows the thermal dispatch schedules and corresponding
power injections that are computed by the optimization model
for four days in the summer and winter of 2016. Both in the
summer and winter, the bulk of the heating and cooling loads
is met by the heat recovery chillers; these are supplemented by
chillers in the summer, and gas-fired heaters in the winter. The
hot and cold thermal storage tanks are used to create hot and
chilled water buffers and shift the electrical energy consumption
of the CEP throughout the day. They can store five hours to a day’s
worth of both heating and cooling loads. As operated today, the
HRCs produce most heavily at night and when both the electricity
price and the campus electricity load are low. During peak price
periods, they are typically turned off.

These figures illustrate how systems that couple heating and
cooling streams can adapt to a range of operating conditions. The
utilization patterns of the thermal storage highlight very different
operating regimes: whereas they are fully charged and discharged
in a fairly simple, repetitive daily pattern during the summer, the
trajectories that are chosen by the optimization model are more
complex in the winter. For 2016, 50% of cooling and 89% of
heating loads are met by the HRCs, within two percent of the
values calculated in Figure 1. The remainder is met by the chillers
and heaters, so that electricity is the main energy input to the
system, and yearly gas consumption is kept low.

The hot and cold storage provide a buffer to decouple the out-
put hot and cold water streams from the HRCs and shift loads in
time. By using this buffer, the CEP is scheduled so as to avoid
high price periods and minimize peak demand. The flat electrical
profile that is presented by the aggregate campus to the utility is
typical of demand-side resources under a schedule that includes a
demand charge. Here, the annual peak demand is reduced from
40 to 34 MW (15%) through the introduction of thermal storage.
Meeting loads with the same number of HRCs and boilers but
without thermal energy storage would also require almost twice
as many chillers, which represents significant capital costs (see
economic case section below).

The CEP consumes only 25% of the annual electrical campus
energy, but its maximum power draw represents 45% of the cam-
pus peak load, so the energy impacts of shifting loads are neces-
sarily less significant than the power impacts. Typical electricity
distribution systems are sized for the worst-case load, in this case
48 MW, or 29% above the 2016 annual peak load with thermal
storage.

Carbon-aware scheduling
We now turn to carbon-aware operations scheduling for district
energy systems. Since we are considering a hypothetical future
with some form of carbon pricing, a decision needs to be made
on how to account for carbon. In order for carbon considerations
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Fig. 1 Daily heating (orange and red) and cooling loads (blue and green) on the Stanford University campus for 2015-2017. Note that throughout the
year there is simultaneous demand for heating and cooling. The red and green areas correspond to the amount of these loads than can be met by
heat exchange using the Heat Recovery Chillers. Over the course of these two years, 51% of cooling and 90% of heating loads can be met using the
HRCs. This calculation assumes that HRCs produce 1.4 times more energy in the form of heating than cooling, and that enough thermal storage is
present so that all of the heating and cooling can be produced simultaneously, irrespective of the hour of the day at which it they are actually meeting
heating or cooling loads.
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Fig. 2 Schematic for a campus district energy system with thermal storage backed heat recovery. On a typical university campus, buildings consume
cooling, heating and power. At Stanford, hot water and cold water is produced on site, at the Central Energy Plant (CEP), and distributed to the
buildings through a network of underground pipes. Return flows from the hot and cold water loops are regenerated at the CEP. The Heat Recovery
Chillers are electric heat pumps that move heat from the return cold water stream to the return hot water stream, without the need for cooling towers.
When additional cooling is needed, conventional chillers are run and waste heat from the chillers is rejected through cooling towers. Similarly, if
additional heat is needed, boilers are used to heat the hot water. Large insulated steel tanks can store five hours to a day’s worth of both heating and
cooling loads. The entire campus consumes electrical energy from the same distribution feeder, and one bill is paid for the aggregate.
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Fig. 3 A storage-backed heat recovery system can meet a range of operating conditions. Optimal thermal dispatch schedule to meet hot (HW load)
and chilled (CW load) energy needs for a Thursday to Sunday period in the summer (a) and winter (b), and corresponding electrical energy flows and
electricity price (c-d). Heating is provided by a stream of hot water at 160◦F and cooling is provided by a stream of chilled water at 40◦F. Figures (a-b)
display both SI and engineering units. In figures (c-d), red and mauve represent the campus dispatchable loads, while green is their sum (total CEP
load); orange represents the campus building loads, or the non-dispatchable loads; and blue represents the total campus load as seen by the outside
utility, that is used to compute the campus electrical bill (loads from CEP plus campus buildings).
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to guide scheduling decisions, we choose to attribute a carbon
intensity to electrical energy flowing through the power system in
units of kgCO2/MWh. Carbon-aware scheduling will have value
in grids where the carbon intensity varies over the course of the
day depending on the mix of generating sources. In the extreme
case with a zero-emission grid, carbon-aware scheduling becomes
irrelevant.

Two scenarios for the AEFs of the CAISO balancing area are
shown in Figure 4 and correspond to (a) AEFs that are estimated
using 2016 generation data, when gas-fired generation was dom-
inant, and (b) AEFs for a 2025 scenario where solar generation is
increased to three times (scenario 3X) the 2016 capacity of utility-
scale solar installations and provides 27% of the annual produced
energy, up from 9% in 2016, and significantly reduces the carbon
intensity of the grid in the middle of the day. This scenario does
not attempt to accurately represent the future grid mix for Cali-
fornia but represents one possible future in order to evaluate to
what extent thermal storage can be used to shape electricity con-
sumption patterns.
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Fig. 4 Heat maps for hourly Average Emissions Factors (AEFs) for the
CAISO balancing area: (a) 2016 actuals and (b) 2025 scenario with
increased solar generation. In the images, each row corresponds to an
hour of the day, and each column to a day of the year.

Optimal CEP operating schedules are computed for these sce-
narios in three different operating modes: (i) a business-as-usual
mode that uses the current tariff as its objective function; (ii) a
mode where a $100/tonne carbon tax is assumed and the hourly
carbon intensities shown in Figure 4 are used to modify the ob-
jective function; and (iii) a carbon-optimal mode that uses a very
high price on carbon, so that the carbon intensity of the grid now
plays a predominant role in making scheduling decisions. The
resulting changes in demand charges, attributable emissions and

annual peak load are reported in Table 1, where operating costs
are calculated according to the current tariff, i.e. excluding car-
bon payments.

Under the 2016 carbon intensity data, carbon policies have
practically no impact on the electrical consumption schedule of
the campus, due to the small daily variations in carbon intensity
(µ = 265, σ = 47 kg/MWh), as can be seen in Figure 4. In con-
trast, scenario 3X (µ = 195, σ = 105 kg/MWh) illustrates the dou-
ble benefit for an electrified district energy system in a power grid
with increased solar generation: (i) a reduction in carbon emis-
sions in the business-as-usual mode that comes from the fact that
most of the campus energy needs are now met through electric-
ity; and (ii) the even greater reductions that can be achieved by
following the carbon intensity fluctuations of a highly renewable
grid and switching to carbon-aware scheduling policies.

A $100/tonne carbon tax corresponds to a volumetric price
for energy of 4.7 cents/kWh for natural gas-powered generation,
which is comparable to current wholesale electricity prices paid
by Direct Access customers (ignoring transmission and distribu-
tion costs). While 2025 emissions are reduced by 20% com-
pared to the 2016 business-as-usual baseline for the $100/tonne
case, the increased cost paid for peak load (demand charge) re-
mains severe and continues to guide scheduling. The solution
from the optimization model avoids high carbon intensity pe-
riods to reduce emissions but also avoids the increase in peak
load and therefore cannot fully respond to the solar power in-
jections. In the 2025 carbon-optimal mode, heating-and-cooling-
related CEP emissions are reduced by over 40% compared to the
2016 business-as-usual baseline (17.6 to 9.8 ktonnes). This re-
duction in the heating and cooling system operational footprint
is an added benefit to the 65% reduction in the overall carbon
footprint that was already achieved by switching the primary fuel
from gas to electricity.

Figure 5 compares (a) the aggregate campus electricity im-
ports for a Business-as-Usual (BAU) schedule to (b) those for a
carbon-optimal schedule where the scenario 3X grid carbon in-
tensity guides operations. This figure illustrates how operations
are shifted from a mode that minimizes peak load and avoids
the high prices that recurrently occur in the early evening to one
that increases load in the middle of the day and avoids nighttime
emissions. The annual grid imports are the same in both sched-
ules, but consumption patterns are very different. The HRCs are
used at full capacity during the daylight hours to fill the hot and
chilled water storage tanks, regardless of energy costs and de-
mand charges, as shown in Figure S4. The compressed operating
schedule of the HRCs result in the higher demand charges re-
ported in Table 1. The major portion of the operating cost changes
are due to the demand charge, which suggests that this would be
the major constraint to switching to carbon-aware scheduling.

The peak-to-trough change in energy consumption that is high-
lighted by Figure 5 (b) directly relates to the solar generation
capacity that can be accommodated in this case: here estimated
to be roughly 15-20 MW from Figure S5, corresponding to 66-
88% of heating sector-related electricity consumption (but only
13-18% of the total campus electricity consumption).
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Table 1 Summary results for the carbon analysis: demand charge increase, total operating emissions, total peak load and CEP operating emissions
under the 2016 and scenario 3X carbon intensities for three different CEP operating modes. The aggregate energy costs are made up of gas and
electrical energy costs and demand charges. In all of the cases presented here, energy costs vary by less than a percent, and the aggregate bill
changes by less than 10%.

2016 AEFs Scenario 3X AEFs
Operating Total op. CEP op. Demand Total Total op. CEP op. Demand Total
mode emissions emissions charge peak load emissions emissions charge peak load

(ktonnes) (ktonnes) increase (%) (MW) (ktonnes) (ktonnes) increase (%) (MW)
Business-As-Usual 73.5 17.6 0.0 33.9 54.3 14.2 0.0 33.9
$100 tonne−1 tax 73.3 17.4 0.8 33.9 53.0 12.9 3.4 35.5
CO2-optimal 72.2 16.3 30.7 44.5 49.9 9.8 33.0 44.7
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Fig. 5 Change in pattern of grid imports from the Business-As-Usual
(BAU) scheduling mode to the carbon-aware scheduling mode under
scenario 3X solar. The heat maps show aggregate hourly electricity
imports for the campus. In the images, each row corresponds to an hour
of the day, and each column to a day of the year.

Carbon abatement cost curves
For any given table of hourly prices, the optimal scheduling model
can produce a schedule of corresponding hourly power draws. We
now use that capability to build carbon abatement cost curves for
a range of scenarios, shown in Figure 6. The baseline scenario
corresponds to the 2016 hourly carbon intensity of the grid; also
shown are results for 2018, and cases with two, three and five
times the 2016 solar generation. Figure 6 also considers reducing
the demand charges to 50% and 10% of 2016 values. These are
redistributed as a fixed cost so that the total bill does not change.
These curves show the cost per tonne of reducing heating-and-
cooling-related emissions from 2016 BAU levels. Under a policy-
compliant 2025 energy mix for California (scenario 3X), Figure 6
shows that heat sector emissions could be reduced by above 40%
from 2016 levels but that the cost for this would be just above

$200 per tonne. If the demand charge is reduced to 10% of the
current rate, costs are reduced to below $40 per tonne.

In each scenario, emissions are lowered first through reduc-
tions in the overall carbon intensity of the grid and further
through carbon-aware scheduling, that is shown here to be an ef-
fective mechanism to deal with challenging heat sector emissions.
The value of thermal storage is directly tied to the daily variability
of the grid carbon intensity: reducing emissions becomes cheaper
as we move from the 2016 California energy mix to one where so-
lar generation capacity doubles and then triples. In scenario 5X,
overgeneration is assumed to be redistributed evenly on all hours
of the day by storage, which reduces the daily variability of grid
carbon intensity and consequently the need for load-shifting.

The economic case for thermal storage
Figure 7 shows the summary results from an analysis of the an-
nual operating cost savings attributable to thermal storage, and
of an economic comparison of thermal storage to electrochemical
storage. The peak load reductions shown in Figure 7a represent
direct savings in the form of operating cost reductions that can be
estimated to be $0.77 million (3.5% savings) of the $22 million
annual operating costs from Figure 7b. These direct savings are
mostly tied to reduced demand charges, that typically represent
$5-20 kW−1 in California72. Peak load reductions also translate
to substantial economic benefits for the grid, as they allow for dis-
tribution system upgrade deferrals in the short-term and smaller
distribution system sizes in the longer term. Increasing the size of
the hot storage does not reduce peak load but reduces the need
for gas heaters and thus decreases capital costs (as well as emis-
sions).

Large-scale battery technologies are increasingly proposed as
a means to integrate ever larger shares of renewable power. For
comparison, we compute the electrical energy required to fully
recharge hot and chilled water tanks of a given size in Figure 7c,
assuming the electricity is first stored in a battery with a round
trip efficiency of 85%. According to this calculation, detailed in
the Methods section and Supplementary Information Note 2, the
thermal storage tanks in the Stanford design are equivalent to
85-95 MWh of electrochemical storage.

The equivalent electrochemical storage capacity in Figure 7c
is then used to normalize the operating cost savings from Fig-
ure 7b and generate Figure 7d. These normalized operating cost
savings can directly be used to generate the payback periods of
storage for different capital costs. At Stanford, thermal storage
saves $8.3 kWhe-eq−1 year−1, which corresponds to a ten-year
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Fig. 7 Estimating the operating value of thermal storage: (a) annual electrical peak load, (b) operating cost savings, (c) equivalent electrochemical
storage size and (d) normalized operating cost savings as a function of thermal storage capacity. Figure (c) answers the question of how much
electrochemical storage would be needed to replace a given hot and chilled storage design. The minimal amount of thermal storage needed for the
2016 dataset that is used here can be computed by reducing the capacity of the thermal storage tanks until the optimization program no longer finds a
feasible hourly operations schedule to meet hot and chilled loads throughout the year with the existing HRCs, chillers, and boilers. The corresponding
frontier is shown as a dashed black line in Figures 6a, b, d. Below that threshold, additional chillers are needed, which results in significant increases
in capital costs. In the extreme case with no thermal storage, seven chillers are needed (up from four in the present-day design). Cost savings are
reported on an annual basis. Calculations are discussed in the Methods section and Supplementary Information Note 2.
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payback period for thermal storage tanks that are expected to
have a lifetime of 35 years and cost $7.4 million. Finally, while
capital costs for commercial battery storage are estimated to be
$280 kWh−1 in 201873 they would have to drop beyond current
expectations74,75 to below $45 kWh−1 to become a more finan-
cially attractive option than thermal storage (assuming a ten-year
lifetime for electrochemical storage76; see Supplementary Infor-
mation Note 2).

We note that the comparison in Figure 7c is only an energetic
equivalence however, since it would not be technically possible to
directly replace the thermal storages with electrochemical stor-
age. The HRCs produce heating and cooling streams at a fixed
ratio. When cooling demand is high and heating demand is low,
the excess heating that is produced by the HRCs is sent to the hot
storage, and the opposite is true when cooling demand is low and
heating demand is high. A battery cannot play this decoupling
role.

Conclusions
This study demonstrates the operation and value of an electrified
heating and cooling system with large-scale thermal storage, us-
ing data from a real-world city-scale experiment. Benefits from
electrification are provided in three ways: 1) shifting electrical
loads to reduce operating costs; 2) decreasing CO2 emissions now
and in the future as the carbon intensity of the electrical grid de-
creases; and 3) a cost-effective alternative to battery storage for
providing operational flexibility and price arbitrage.

We leverage real-world consumption and operational data from
a first-of-a-kind facility that meets heating, cooling and electrical
energy requirements equivalent to a city of 30,000 people. Heat-
recovery chillers provide the backbone of the heating and cooling
system. Thermal storage enables them to be turned off when
electricity prices are high and to avoid large demand charges.
Based on actual operating conditions, the campus heating and
cooling system provides a 15 MW dispatchable load correspond-
ing to 25% of annual campus electrical energy and 45% of peak
power.

Compared to the case where no thermal storage is available,
peak demand is reduced from 40 to 34 MW, annual operating
cost savings represent $770,000 (3.5% of the entire campus en-
ergy bill), and the number of electrical chillers required to meet
cooling loads drops from 7 to 3.

On top of the 65% reduction in the overall campus carbon foot-
print that was achieved by electrifying the heating and cooling
infrastructure, thermal storage can also drive a reduction of over
40% in heating sector carbon emissions from 2016 to 2025 under
a policy-compliant solar generation scenario, and the combined
district energy system can absorb the output from a 15 to 20 MW
solar farm.

The flexibility provided by thermal storage is very inexpensive:
achieving comparable flexibility with battery storage would re-
quire costs of $45 kWh−1, to be compared with 2018 estimated
prices for batteries ($280 kWh−1)73.

Today, the main economic value proposition for thermal storage
lies in the mitigation of demand charges by decreasing peak load.
In the future, if carbon-aware scheduling becomes the norm, ther-

mal storage can and should be used to increase load in the middle
of the day when solar power is abundant. However, capabilities
to increase load in times of excess generation or low carbon inten-
sity are not valued by utility signals today. Current rate structures
encourage consumers to present a high load factor to the utility
(ratio of average load to maximum load). Even with time-varying
prices, the optimal operations schedule for a rational consumer
that is subject to a tariff with a demand charge maintains an ag-
gregate load that is as flat as possible. The carbon abatement
curves that we build quantify the potential to reduce heating sec-
tor emissions. Under today’s demand charges, unlocking that po-
tential is prohibitively expensive.

The work presented here draws on data and experience from
a real-world case study, but the statements that are made are, in
fact, quite general. While they were derived in the context of a
specific location, we believe the main conclusions to be robust, in
particular concerning the capability of thermal storage to provide
peak-load management and to unlock the potential for carbon-
aware scheduling in electrified district energy systems, at a low
cost. Demand charges, also called capacity charges, are very com-
mon in the power sector, and are usually linked to either monthly
or annual peak usage. Given the typical weight of such charges72,
thermal storage will remain attractive to provide peak shaving un-
der a rate structure that includes a flat, time-of-day-dependent, or
dynamic volumetric price in addition to a demand charge. As for
the carbon-aware scheduling mode that was explored, our mod-
eling efforts make two generic assumptions: (i) some price is put
on carbon (this applies equally to a carbon tax or a cap-and-trade
system), and (ii) the carbon accounting metric that is used cap-
tures hourly fluctuations in the carbon intensity of the grid. Under
the carbon-optimal mode where the price on carbon is dominant
in scheduling operating decisions, the carbon intensity of the grid
plays the role of a dynamic electricity price, which highlights that
thermal storage would also provide significant benefits under a
rate structure that does not include a demand charge, but only
includes a dynamic electricity price. The hourly carbon intensi-
ties that are used in this paper are specific to solar-rich Califor-
nia, and so our quantitative results on decarbonization benefits
are also specific to the California grid mix. However, similar de-
carbonization benefits are to be expected in other locations where
the availability in clean power varies throughout the day.

The type of energy system we describe is directly applicable to
universities, hospitals and industrial campuses that typically op-
erate shared infrastructure. It is also more broadly applicable to
cities, towns municipalities and communities in urban areas. Dis-
trict heating and cooling networks already play a key role in many
developed countries and are expected to be economically compet-
itive in urban areas in the future50,77, but their energy supply is
currently dominated by fossil fuels15. In the design that was de-
scribed here, a central authority manages the district heating and
cooling networks but does not control the electrical consumption
of the other components of the energy system, which greatly sim-
plifies implementation, but limits the potential for complete de-
carbonization of the campus energy system. However, the frame-
work we consider is flexible enough that other energy assets con-
trolled by a central authority could be incorporated. A notable
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example would be the charging infrastructure for an electrified
transportation network. This study outlines a viable path forward
to electrify preexisting systems and provides further arguments to
expand their utilization.

As was noted by previous authors42,44,63, the main barriers to
adoption of such renewable district energy systems are more po-
litical and social than technological or economic. For example,
in the case we describe here, retrofit of the existing systems us-
ing electrification and heat recovery for the heating and cooling
system had the lowest cost of all the options considered. For cam-
puses and large commercial/industrial facilities, investment plan-
ning is centralized thus making cost-effective investments in such
systems easier. Similarly, for newly built communities, installa-
tion at the time of construction can also be easily accomplished if
the appropriate regulations or incentives are in place. However,
for cities with many property owners in communities that are not
centrally planned, retrofit of district heating and cooling systems
will require a high degree of cooperation in urbanized areas, as
well as strong commitments to support the high upfront capital
costs that are typical of such systems. The experiment we consid-
ered in this paper was driven by financial and social responsibility
decisions on the part of a university, and there were no policies
in place to incentivize the electrification of heat at a district scale.
The other condition necessary for such systems to have large car-
bon reduction benefits is access to an electric power supply with
low carbon intensity. California does provide a strong and sta-
ble framework for decarbonization of the electricity grid through
its Renewable Portfolio Standard78. Any set of policy measures
to decarbonize the electricity grid will benefit the decarboniza-
tion of electrified heating and cooling. Even at a modest price
of $50 per metric tonne, electrifying the heating and cooling sys-
tem would have resulted in net present savings of $106 million
over 35 years for the Stanford campus, to be compared with a net
present cost that was estimated at $1.3 billion (assuming a 5% an-
nual discount rate). This paper explored the further benefits that
would be achieved by a carbon price from carbon-aware schedul-
ing, which will have strong value in energy grids with high shares
of solar and wind power.

Thermal-storage-backed electrification is a prime example of
how to reduce emissions in the challenging heat sector. This work
provides new options for regulators and policymakers and high-
lights that district scale thermal storage represents a very real
option to provide low-cost flexibility for future power grids and
decarbonization of the heating sector.

Methods

Summary

This paper models the rational behavior of a district energy sys-
tem. Hourly thermal and electrical energy consumption and emis-
sions factors data are compiled from different sources. These data
are entered into an optimization model that determines the opti-
mal operating schedule for the different energy assets in the dis-
trict energy system. The program we build minimizes operating
costs subject to a set of technological constraints and such that
thermal and electrical campus loads are met. The objective func-

tion can include components to reflect costs from the monthly
peak power draw (demand charges), hourly energy usage, or car-
bon dioxide emissions. The weights that are chosen for these dif-
ferent components determine what mode the system is operating
in. The equivalent electrochemical storage system to a given ther-
mal storage design is also computed, to compare the economic
values of thermal and electrochemical storage in the context of
district energy networks.

Energy consumption data

Electrical, cooling and heating loads are provided by the Stan-
ford Energy Systems Innovations Project68 (SESI). These hourly
time series data are measured at the Central Energy Plant (CEP)
and provide an estimate of the aggregate campus consumption
served by the CEP. The electrical load measurements are taken
from the master meter at the substation, which is the point of en-
try for electrical energy on campus. Thermal loads reported here
correspond to measurements of energy leaving the CEP, so they
include both the consumption of the buildings and losses in the
ten-mile distribution networks for hot and chilled water. Missing
data points are filled by taking the average of the surrounding
values. Heat maps for the three energy streams are presented in
the Supplementary Information. To produce Figure 1, the daily
loads for heating and cooling are computed by summing the cor-
responding hourly loads. The maximum daily heating and cooling
load that could be met by heat recovery chillers is then computed,
assuming that they produce 1.37 GJ of heating per GJ of cooling
(or 0.016 mmbtu per ton-hour).

Emissions factors

Average Emissions Factors (AEFs) measure the average carbon
intensity of the electrical energy flowing through the power
grid, calculated in units of kgCO2-eq/MWh from the generation
sources that are producing at a given instant. Generation data
for the CAISO balancing area can be publicly accessed79 and are
used together with Life-Cycle Assessment carbon intensities from
the IPCC80 to estimate hourly AEFs for the considered time frame
(also see Supplementary Information Tables S1, S2 and Figure
S2). AEFs should not be confused with Marginal Emissions Fac-
tors (MEFs), that measure the short-term avoided emissions im-
pact of an intervention on the power grid, by calculating the car-
bon intensity of generators that are dispatched last in a marginal-
cost-based system. These would also be the first to be shut down
if demand is reduced or zero-marginal cost renewable genera-
tion increases. In the context for this work, we are considering
the carbon payments that should be made for actual attributable
emissions, so we choose to use AEFs. We emphasize that chang-
ing from one metric to another or using more granular grid data
does not affect the methodology presented in this work - as long
as we use some form of hourly price that reflects the environ-
mental impact associated with the electrons flowing through the
power system - although it could change the results and their in-
terpretation.
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Optimal scheduling of the different energy assets in a district
energy system

We model a district energy system in which scheduling decisions
are made centrally to minimize aggregate system operating costs.
The decision epoch is hourly, and we consider a program with T
timesteps. In the infrastructure design we consider, three types
of machines are used to produce heat: gas boilers, heat recovery
chillers (HRCs) and conventional chillers. Both types of chillers
are heat pumps, that extract heat from the environment. The
decision variables associated with the heat pumps are their hourly
electrical power input pHRC,t and pCh,t . They are characterized by
their efficiency (hot and chilled water efficiency for the HRCs, and
chilled water efficiency for the chiller):

∀t = 1 · · ·T −1, qC,HRC,t = ηC,HRC pHRC,t , (1)

∀t = 1 · · ·T −1, qH,HRC,t = ηH,C,HRCqC,HRC,t , (2)

∀t = 1 · · ·T −1, qCh,t = ηCh pCh,t . (3)

In equations (1-3), the letter η denotes an efficiency (typical
values are given in Supplementary Information Table S3) and q
denotes a water flow rate. The output of the machines is con-
strained:

∀t = 1 · · ·T −1, qC,HRC,t ∈ [0, q̄HRC], (4)

∀t = 1 · · ·T −1, qCh,t ∈ [0, q̄Ch]. (5)

The gas boilers consume mostly gas, and some electricity, to pro-
duce hot water. The decision variables associated with their op-
eration correspond to their gas consumption gBo,t ∈ [0, ḡBo]:

∀t = 1 · · ·T −1, qBo,t = ηBogBo,t . (6)

It is also convenient to define a dependent variable to represent
electrical consumption:

∀t = 1 · · ·T −1, pBo,t = ηG,E,BogBo,t . (7)

Changing the output of the machines too often leads to higher
wear-and-tear and maintenance, that we model by including a
small penalty to changes in the power going into the machines.
For machine j, j ∈ {HRC,Ch,Bo}, we introduce the (T − 2) vari-
ables z j,t ∈ R, t = 1 · · ·T −2 and the 2(T −2) constraints:

∀t = 1 · · ·T −2, z j,t ≥ p j,t − p j,t+1, (8)

∀t = 1 · · ·T −2, z j,t ≥ p j,t+1− p j,t . (9)

These are equivalent to the non-linear absolute value constraint:

∀t = 1 · · ·T −2, z j,t ≥ |p j,t+1− p j,t |. (10)

The auxiliary variables z j,t can then be penalized in the objective
function. The thermal storage tanks can be used to store both
heating and cooling for later use and are characterized by their
state of charge sH,t and sC,t , t = 1 · · ·T . We write the equations for
their dynamics:

∀t = 1 · · ·T −1, sH,t+1 = sH,t +qH,HRC,t +qBo,t−dH,t +du
H,t , (11)

∀t = 1 · · ·T −1, sC,t+1 = sC,t +qC,HRC,t +qCh,t −dC,t +du
C,t . (12)

In equations (11-12) we introduced the unmet loads du
H,t ,d

u
C,t ≥ 0,

that are used to ensure the program remains feasible. These are
penalized in the objective function (and should be zero or near
zero in normal operating conditions). The amount of energy in
the tanks is constrained:

∀t = 1 · · ·T, sH,t ∈ [0, s̄H ], (13)

∀t = 1 · · ·T, sC,t ∈ [0, s̄C]. (14)

Boundary conditions are also imposed:

sH,1 = sH,i, sH,T = sH, f , (15)

sC,1 = sC,i, sC,T = sC, f . (16)

It is convenient to define global import variables for the electrical
and gas energy coming into the campus:

∀t = 1 · · ·T −1, pt = pHRC,t + pCh,t + pBo,t +dE,t , (17)

∀t = 1 · · ·T −1, gt = gBo,t . (18)

With these global import variables, we can state the form of the
campus bill:

T

∑
t=1

(πE,t ptδt +πG,tgtδt)+ ∑
j∈M

πP,m max
t:m(t)= j

pt . (19)

This form is very typical of energy systems billed under a two-part
tariff including a demand charge. The two components of the bill
reflect that the customer is paying fees for both capacity (power)
and energy usage. The second sum in equation (19) is non-linear,
but can be linearized81 by introducing variables y j, j ∈M , where
M is the set of months, and enforcing the constraints:

∀t = 1 · · ·T −1, ym(t) ≥ pt . (20)

The maxima in equation (19) can then be replaced by variables
y j, j ∈M . We note that equation (19) is general enough to ac-
count for an hourly carbon price. This can be done simply by re-
placing the hourly prices for electricity πE,t and gas πG,t by prices
π̂E,t and π̂G,t that factor the carbon externality:

π̂E,t = πE,t +πE,CO2,t , π̂G,t = πG,t +πG,CO2,t . (21)

The optimization program minimizes the linearized version of
equation (19) subject to the constraints stated in equations (1-18)
and (20) and can be classified as a Quadratic Program (the full
objective also has quadratic penalties for unmet loads). Increas-
ing the prices of different components in the objective function
will increase the weight of the costs associated with energy usage,
demand charges or carbon emissions in the optimization program
and determines the mode the campus is operating in. For the BAU
mode that corresponds to Figures 3 and 5a, the carbon price is set
to zero, and we use actual values for gas, electricity prices and de-
mand charges. For the different carbon-aware modes in Table 1
and Figure 6, different carbon prices are used with the computed
AEFs to generate the hourly carbon prices for electricity πE,CO2,t
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and gas πG,CO2,t . The carbon-optimal mode in Figure 5b corre-
sponds to an arbitrarily high price on carbon, such that schedul-
ing decisions are now overwhelmingly guided by carbon consid-
erations. This optimization program is implemented using the
Julia JuMP package69, and solved using the Gurobi software70.
Although this model was built to describe the different energy as-
sets on the Stanford campus, the modular approach that is taken
here can easily be extended to include other controllable sources
and sinks of energy, such as CHP or electric vehicle charging, as
long as costs are additive, and the new assets are accounted for in
the global import variables in equations (17-18) and the storage
dynamics in equations (11-12).

Equivalency between thermal storage and electrochemical
storage

We calculate the electrical storage size that would be required to
generate as much chilled and hot water as what is in the thermal
tanks. We call r the proportion of the cooling loads that are met
by heat recovery chillers, the remainder being met by the con-
ventional chillers. Since heat recovery chillers and chillers are
each used to meet half of the cooling loads in our 2016 cost-
minimization solution to the scheduling problem, we use that as
an assumption here. We further assume that heat recovery chillers
consume ηHRC,c = 1.32 kWh of electricity to produce 1 ton-hour of
cooling and ηHRC,h = 0.02 mmbtu of heating; that the chillers con-
sume ηCh,c = 0.45 kWh per ton of cooling; and that the round-trip
a.c.-a.c efficiency of electrochemical storage is ηe = 85%82. We
calculate the equivalent electrochemical storage size to (Sc,Sh) of
chilled and hot thermal storage as:

max
(

r(ηCh,c +ηHRC,c)

ηe
Sc,

ηHRC,h

ηe
Sh

)
(22)

The main assumption behind equation (22) is that there must
be at least enough electrochemical storage to generate enough
hot or chilled water as specified by (Sc,Sh). We note that the
energetic equivalence described by equation (22) only relates to
the ability of thermal storage to shift electrical load, not to the
ability of the hot and cold water storage to align non-concurrent
heating and cooling loads. Technically, electrochemical storage
could therefore not directly replace thermal storage in this sys-
tem. Some amount of thermal storage would still be needed to
fully enable the use of the HRCs by allowing machines that must
output heating and cooling streams with a constant ratio to meet
thermal loads that do not have a constant ratio. Also see the dis-
cussion in Supplementary Information Note 2.

Data availability

The code and data that were used for this study are available on
GitHub83.
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